Loading…
The transport of images method: computing all zeros of harmonic mappings by continuation
Abstract We present a continuation method to compute all zeros of a harmonic mapping $\,f$ in the complex plane. Our method works without any prior knowledge of the number of zeros or their approximate location. We start by computing all solutions of $f(z) = \eta $ with $\lvert \eta \rvert{}$ suffic...
Saved in:
Published in: | IMA journal of numerical analysis 2022-07, Vol.42 (3), p.2403-2428 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c228t-26d5be4ec0f8847cb4ba964f99d81600f8e80bc310ec1a6451e844d016f9ae5a3 |
container_end_page | 2428 |
container_issue | 3 |
container_start_page | 2403 |
container_title | IMA journal of numerical analysis |
container_volume | 42 |
creator | Sète, Olivier Zur, Jan |
description | Abstract
We present a continuation method to compute all zeros of a harmonic mapping $\,f$ in the complex plane. Our method works without any prior knowledge of the number of zeros or their approximate location. We start by computing all solutions of $f(z) = \eta $ with $\lvert \eta \rvert{}$ sufficiently large and then track all solutions as $\eta $ tends to $0$ to finally obtain all zeros of $f$. Using theoretical results on harmonic mappings we analyze where and how the number of solutions of $f(z) = \eta $ changes and incorporate this into the method. We prove that our method is guaranteed to compute all zeros, as long as none of them is singular. In our numerical examples the method always terminates with the correct number of zeros, is very fast compared to general purpose root finders and is highly accurate in terms of the residual. An easy-to-use MATLAB implementation is freely available online. |
doi_str_mv | 10.1093/imanum/drab040 |
format | article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imanum_drab040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imanum/drab040</oup_id><sourcerecordid>10.1093/imanum/drab040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-26d5be4ec0f8847cb4ba964f99d81600f8e80bc310ec1a6451e844d016f9ae5a3</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EEqGwMntlSHtOLk7MhiooSJVYisQWOY7TBCVxZDtD-fW4Snemk-6-93TvEfLIYM1ApJtukOM8bGorK0C4IhFDjnHKMbkmESR5EqPIxS25c-4HAJDnEJHvQ6upt3J0k7GemoYGm6N2dNC-NfUzVWaYZt-NRyr7nv5qa9yZaqUdzNgpOshpCldHq1Ngx0DO0ndmvCc3jeydfrjMFfl6ez1s3-P95-5j-7KPVZIUPk54nVUatYKmKDBXFVZScGyEqAvGIWx1AZVKGWjFJMeM6QKxBsYbIXUm0xVZL74qfOasbsrJhgj2VDIoz72USy_lpZcgeFoEZp7-Y_8AUTdo0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The transport of images method: computing all zeros of harmonic mappings by continuation</title><source>Oxford Journals Online</source><creator>Sète, Olivier ; Zur, Jan</creator><creatorcontrib>Sète, Olivier ; Zur, Jan</creatorcontrib><description>Abstract
We present a continuation method to compute all zeros of a harmonic mapping $\,f$ in the complex plane. Our method works without any prior knowledge of the number of zeros or their approximate location. We start by computing all solutions of $f(z) = \eta $ with $\lvert \eta \rvert{}$ sufficiently large and then track all solutions as $\eta $ tends to $0$ to finally obtain all zeros of $f$. Using theoretical results on harmonic mappings we analyze where and how the number of solutions of $f(z) = \eta $ changes and incorporate this into the method. We prove that our method is guaranteed to compute all zeros, as long as none of them is singular. In our numerical examples the method always terminates with the correct number of zeros, is very fast compared to general purpose root finders and is highly accurate in terms of the residual. An easy-to-use MATLAB implementation is freely available online.</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/drab040</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>IMA journal of numerical analysis, 2022-07, Vol.42 (3), p.2403-2428</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-26d5be4ec0f8847cb4ba964f99d81600f8e80bc310ec1a6451e844d016f9ae5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Sète, Olivier</creatorcontrib><creatorcontrib>Zur, Jan</creatorcontrib><title>The transport of images method: computing all zeros of harmonic mappings by continuation</title><title>IMA journal of numerical analysis</title><description>Abstract
We present a continuation method to compute all zeros of a harmonic mapping $\,f$ in the complex plane. Our method works without any prior knowledge of the number of zeros or their approximate location. We start by computing all solutions of $f(z) = \eta $ with $\lvert \eta \rvert{}$ sufficiently large and then track all solutions as $\eta $ tends to $0$ to finally obtain all zeros of $f$. Using theoretical results on harmonic mappings we analyze where and how the number of solutions of $f(z) = \eta $ changes and incorporate this into the method. We prove that our method is guaranteed to compute all zeros, as long as none of them is singular. In our numerical examples the method always terminates with the correct number of zeros, is very fast compared to general purpose root finders and is highly accurate in terms of the residual. An easy-to-use MATLAB implementation is freely available online.</description><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhS0EEqGwMntlSHtOLk7MhiooSJVYisQWOY7TBCVxZDtD-fW4Snemk-6-93TvEfLIYM1ApJtukOM8bGorK0C4IhFDjnHKMbkmESR5EqPIxS25c-4HAJDnEJHvQ6upt3J0k7GemoYGm6N2dNC-NfUzVWaYZt-NRyr7nv5qa9yZaqUdzNgpOshpCldHq1Ngx0DO0ndmvCc3jeydfrjMFfl6ez1s3-P95-5j-7KPVZIUPk54nVUatYKmKDBXFVZScGyEqAvGIWx1AZVKGWjFJMeM6QKxBsYbIXUm0xVZL74qfOasbsrJhgj2VDIoz72USy_lpZcgeFoEZp7-Y_8AUTdo0w</recordid><startdate>20220722</startdate><enddate>20220722</enddate><creator>Sète, Olivier</creator><creator>Zur, Jan</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220722</creationdate><title>The transport of images method: computing all zeros of harmonic mappings by continuation</title><author>Sète, Olivier ; Zur, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-26d5be4ec0f8847cb4ba964f99d81600f8e80bc310ec1a6451e844d016f9ae5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sète, Olivier</creatorcontrib><creatorcontrib>Zur, Jan</creatorcontrib><collection>CrossRef</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sète, Olivier</au><au>Zur, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The transport of images method: computing all zeros of harmonic mappings by continuation</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2022-07-22</date><risdate>2022</risdate><volume>42</volume><issue>3</issue><spage>2403</spage><epage>2428</epage><pages>2403-2428</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><abstract>Abstract
We present a continuation method to compute all zeros of a harmonic mapping $\,f$ in the complex plane. Our method works without any prior knowledge of the number of zeros or their approximate location. We start by computing all solutions of $f(z) = \eta $ with $\lvert \eta \rvert{}$ sufficiently large and then track all solutions as $\eta $ tends to $0$ to finally obtain all zeros of $f$. Using theoretical results on harmonic mappings we analyze where and how the number of solutions of $f(z) = \eta $ changes and incorporate this into the method. We prove that our method is guaranteed to compute all zeros, as long as none of them is singular. In our numerical examples the method always terminates with the correct number of zeros, is very fast compared to general purpose root finders and is highly accurate in terms of the residual. An easy-to-use MATLAB implementation is freely available online.</abstract><pub>Oxford University Press</pub><doi>10.1093/imanum/drab040</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4979 |
ispartof | IMA journal of numerical analysis, 2022-07, Vol.42 (3), p.2403-2428 |
issn | 0272-4979 1464-3642 |
language | eng |
recordid | cdi_crossref_primary_10_1093_imanum_drab040 |
source | Oxford Journals Online |
title | The transport of images method: computing all zeros of harmonic mappings by continuation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20transport%20of%20images%20method:%20computing%20all%20zeros%20of%20harmonic%20mappings%20by%20continuation&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=S%C3%A8te,%20Olivier&rft.date=2022-07-22&rft.volume=42&rft.issue=3&rft.spage=2403&rft.epage=2428&rft.pages=2403-2428&rft.issn=0272-4979&rft.eissn=1464-3642&rft_id=info:doi/10.1093/imanum/drab040&rft_dat=%3Coup_cross%3E10.1093/imanum/drab040%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c228t-26d5be4ec0f8847cb4ba964f99d81600f8e80bc310ec1a6451e844d016f9ae5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imanum/drab040&rfr_iscdi=true |