Loading…

The transport of images method: computing all zeros of harmonic mappings by continuation

Abstract We present a continuation method to compute all zeros of a harmonic mapping $\,f$ in the complex plane. Our method works without any prior knowledge of the number of zeros or their approximate location. We start by computing all solutions of $f(z) = \eta $ with $\lvert \eta \rvert{}$ suffic...

Full description

Saved in:
Bibliographic Details
Published in:IMA journal of numerical analysis 2022-07, Vol.42 (3), p.2403-2428
Main Authors: Sète, Olivier, Zur, Jan
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c228t-26d5be4ec0f8847cb4ba964f99d81600f8e80bc310ec1a6451e844d016f9ae5a3
container_end_page 2428
container_issue 3
container_start_page 2403
container_title IMA journal of numerical analysis
container_volume 42
creator Sète, Olivier
Zur, Jan
description Abstract We present a continuation method to compute all zeros of a harmonic mapping $\,f$ in the complex plane. Our method works without any prior knowledge of the number of zeros or their approximate location. We start by computing all solutions of $f(z) = \eta $ with $\lvert \eta \rvert{}$ sufficiently large and then track all solutions as $\eta $ tends to $0$ to finally obtain all zeros of $f$. Using theoretical results on harmonic mappings we analyze where and how the number of solutions of $f(z) = \eta $ changes and incorporate this into the method. We prove that our method is guaranteed to compute all zeros, as long as none of them is singular. In our numerical examples the method always terminates with the correct number of zeros, is very fast compared to general purpose root finders and is highly accurate in terms of the residual. An easy-to-use MATLAB implementation is freely available online.
doi_str_mv 10.1093/imanum/drab040
format article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imanum_drab040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imanum/drab040</oup_id><sourcerecordid>10.1093/imanum/drab040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-26d5be4ec0f8847cb4ba964f99d81600f8e80bc310ec1a6451e844d016f9ae5a3</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EEqGwMntlSHtOLk7MhiooSJVYisQWOY7TBCVxZDtD-fW4Snemk-6-93TvEfLIYM1ApJtukOM8bGorK0C4IhFDjnHKMbkmESR5EqPIxS25c-4HAJDnEJHvQ6upt3J0k7GemoYGm6N2dNC-NfUzVWaYZt-NRyr7nv5qa9yZaqUdzNgpOshpCldHq1Ngx0DO0ndmvCc3jeydfrjMFfl6ez1s3-P95-5j-7KPVZIUPk54nVUatYKmKDBXFVZScGyEqAvGIWx1AZVKGWjFJMeM6QKxBsYbIXUm0xVZL74qfOasbsrJhgj2VDIoz72USy_lpZcgeFoEZp7-Y_8AUTdo0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The transport of images method: computing all zeros of harmonic mappings by continuation</title><source>Oxford Journals Online</source><creator>Sète, Olivier ; Zur, Jan</creator><creatorcontrib>Sète, Olivier ; Zur, Jan</creatorcontrib><description>Abstract We present a continuation method to compute all zeros of a harmonic mapping $\,f$ in the complex plane. Our method works without any prior knowledge of the number of zeros or their approximate location. We start by computing all solutions of $f(z) = \eta $ with $\lvert \eta \rvert{}$ sufficiently large and then track all solutions as $\eta $ tends to $0$ to finally obtain all zeros of $f$. Using theoretical results on harmonic mappings we analyze where and how the number of solutions of $f(z) = \eta $ changes and incorporate this into the method. We prove that our method is guaranteed to compute all zeros, as long as none of them is singular. In our numerical examples the method always terminates with the correct number of zeros, is very fast compared to general purpose root finders and is highly accurate in terms of the residual. An easy-to-use MATLAB implementation is freely available online.</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/drab040</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>IMA journal of numerical analysis, 2022-07, Vol.42 (3), p.2403-2428</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-26d5be4ec0f8847cb4ba964f99d81600f8e80bc310ec1a6451e844d016f9ae5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Sète, Olivier</creatorcontrib><creatorcontrib>Zur, Jan</creatorcontrib><title>The transport of images method: computing all zeros of harmonic mappings by continuation</title><title>IMA journal of numerical analysis</title><description>Abstract We present a continuation method to compute all zeros of a harmonic mapping $\,f$ in the complex plane. Our method works without any prior knowledge of the number of zeros or their approximate location. We start by computing all solutions of $f(z) = \eta $ with $\lvert \eta \rvert{}$ sufficiently large and then track all solutions as $\eta $ tends to $0$ to finally obtain all zeros of $f$. Using theoretical results on harmonic mappings we analyze where and how the number of solutions of $f(z) = \eta $ changes and incorporate this into the method. We prove that our method is guaranteed to compute all zeros, as long as none of them is singular. In our numerical examples the method always terminates with the correct number of zeros, is very fast compared to general purpose root finders and is highly accurate in terms of the residual. An easy-to-use MATLAB implementation is freely available online.</description><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhS0EEqGwMntlSHtOLk7MhiooSJVYisQWOY7TBCVxZDtD-fW4Snemk-6-93TvEfLIYM1ApJtukOM8bGorK0C4IhFDjnHKMbkmESR5EqPIxS25c-4HAJDnEJHvQ6upt3J0k7GemoYGm6N2dNC-NfUzVWaYZt-NRyr7nv5qa9yZaqUdzNgpOshpCldHq1Ngx0DO0ndmvCc3jeydfrjMFfl6ez1s3-P95-5j-7KPVZIUPk54nVUatYKmKDBXFVZScGyEqAvGIWx1AZVKGWjFJMeM6QKxBsYbIXUm0xVZL74qfOasbsrJhgj2VDIoz72USy_lpZcgeFoEZp7-Y_8AUTdo0w</recordid><startdate>20220722</startdate><enddate>20220722</enddate><creator>Sète, Olivier</creator><creator>Zur, Jan</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220722</creationdate><title>The transport of images method: computing all zeros of harmonic mappings by continuation</title><author>Sète, Olivier ; Zur, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-26d5be4ec0f8847cb4ba964f99d81600f8e80bc310ec1a6451e844d016f9ae5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sète, Olivier</creatorcontrib><creatorcontrib>Zur, Jan</creatorcontrib><collection>CrossRef</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sète, Olivier</au><au>Zur, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The transport of images method: computing all zeros of harmonic mappings by continuation</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2022-07-22</date><risdate>2022</risdate><volume>42</volume><issue>3</issue><spage>2403</spage><epage>2428</epage><pages>2403-2428</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><abstract>Abstract We present a continuation method to compute all zeros of a harmonic mapping $\,f$ in the complex plane. Our method works without any prior knowledge of the number of zeros or their approximate location. We start by computing all solutions of $f(z) = \eta $ with $\lvert \eta \rvert{}$ sufficiently large and then track all solutions as $\eta $ tends to $0$ to finally obtain all zeros of $f$. Using theoretical results on harmonic mappings we analyze where and how the number of solutions of $f(z) = \eta $ changes and incorporate this into the method. We prove that our method is guaranteed to compute all zeros, as long as none of them is singular. In our numerical examples the method always terminates with the correct number of zeros, is very fast compared to general purpose root finders and is highly accurate in terms of the residual. An easy-to-use MATLAB implementation is freely available online.</abstract><pub>Oxford University Press</pub><doi>10.1093/imanum/drab040</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-4979
ispartof IMA journal of numerical analysis, 2022-07, Vol.42 (3), p.2403-2428
issn 0272-4979
1464-3642
language eng
recordid cdi_crossref_primary_10_1093_imanum_drab040
source Oxford Journals Online
title The transport of images method: computing all zeros of harmonic mappings by continuation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20transport%20of%20images%20method:%20computing%20all%20zeros%20of%20harmonic%20mappings%20by%20continuation&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=S%C3%A8te,%20Olivier&rft.date=2022-07-22&rft.volume=42&rft.issue=3&rft.spage=2403&rft.epage=2428&rft.pages=2403-2428&rft.issn=0272-4979&rft.eissn=1464-3642&rft_id=info:doi/10.1093/imanum/drab040&rft_dat=%3Coup_cross%3E10.1093/imanum/drab040%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c228t-26d5be4ec0f8847cb4ba964f99d81600f8e80bc310ec1a6451e844d016f9ae5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imanum/drab040&rfr_iscdi=true