Loading…
Optimal numerical integration and approximation of functions on ℝ d equipped with Gaussian measure
We investigate the numerical approximation of integrals over $\mathbb{R}^{d}$ equipped with the standard Gaussian measure $\gamma $ for integrands belonging to the Gaussian-weighted Sobolev spaces $W^{\alpha }_{p}(\mathbb{R}^{d}, \gamma )$ of mixed smoothness $\alpha \in \mathbb{N}$ for $1 < p &l...
Saved in:
Published in: | IMA journal of numerical analysis 2024-04, Vol.44 (2), p.1242-1267 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c841-f194575210b877cfe711d4d2408e21e8dbe7a5729f1eeba07b62f17e71fa6e393 |
---|---|
cites | cdi_FETCH-LOGICAL-c841-f194575210b877cfe711d4d2408e21e8dbe7a5729f1eeba07b62f17e71fa6e393 |
container_end_page | 1267 |
container_issue | 2 |
container_start_page | 1242 |
container_title | IMA journal of numerical analysis |
container_volume | 44 |
creator | Dũng, Dinh Kien Nguyen, Van |
description | We investigate the numerical approximation of integrals over $\mathbb{R}^{d}$ equipped with the standard Gaussian measure $\gamma $ for integrands belonging to the Gaussian-weighted Sobolev spaces $W^{\alpha }_{p}(\mathbb{R}^{d}, \gamma )$ of mixed smoothness $\alpha \in \mathbb{N}$ for $1 < p < \infty $. We prove the asymptotic order of the convergence of optimal quadratures based on $n$ integration nodes and propose a novel method for constructing asymptotically optimal quadratures. As for related problems, we establish by a similar technique the asymptotic order of the linear, Kolmogorov and sampling $n$-widths in the Gaussian-weighted space $L_{q}(\mathbb{R}^{d}, \gamma )$ of the unit ball of $W^{\alpha }_{p}(\mathbb{R}^{d}, \gamma )$ for $1 \leq q < p < \infty $ and $q=p=2$. |
doi_str_mv | 10.1093/imanum/drad051 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imanum_drad051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imanum_drad051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c841-f194575210b877cfe711d4d2408e21e8dbe7a5729f1eeba07b62f17e71fa6e393</originalsourceid><addsrcrecordid>eNotkEFOwzAQRS0EEqWwZe0LpPU4TpwsUQWlUqVuuo-ceAxGjWPsRMCea3A5ToJLu5o_o_9HX4-Qe2ALYHW-tL1yU7_UQWlWwAWZgShFlpeCX5IZ45Jnopb1NbmJ8Y0xJkrJZkTv_JiCB5qiGGyXlHUjvgQ12sFR5TRV3ofhM5n-L4OhZnLdUUea9t_vH6opvk_We9T0w46vdK2mGK1ytEcVp4C35MqoQ8S785yT_dPjfvWcbXfrzephm3WVgMxALQpZcGBtJWVnUAJooblgFXLASrcoVSF5bQCxVUy2JTcgk82oEvM6n5PF6W0XhhgDmsaHVDt8NcCaI6LmhKg5I8r_ANyGX7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal numerical integration and approximation of functions on ℝ d equipped with Gaussian measure</title><source>Oxford Journals Online</source><creator>Dũng, Dinh ; Kien Nguyen, Van</creator><creatorcontrib>Dũng, Dinh ; Kien Nguyen, Van</creatorcontrib><description>We investigate the numerical approximation of integrals over $\mathbb{R}^{d}$ equipped with the standard Gaussian measure $\gamma $ for integrands belonging to the Gaussian-weighted Sobolev spaces $W^{\alpha }_{p}(\mathbb{R}^{d}, \gamma )$ of mixed smoothness $\alpha \in \mathbb{N}$ for $1 < p < \infty $. We prove the asymptotic order of the convergence of optimal quadratures based on $n$ integration nodes and propose a novel method for constructing asymptotically optimal quadratures. As for related problems, we establish by a similar technique the asymptotic order of the linear, Kolmogorov and sampling $n$-widths in the Gaussian-weighted space $L_{q}(\mathbb{R}^{d}, \gamma )$ of the unit ball of $W^{\alpha }_{p}(\mathbb{R}^{d}, \gamma )$ for $1 \leq q < p < \infty $ and $q=p=2$.</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/drad051</identifier><language>eng</language><ispartof>IMA journal of numerical analysis, 2024-04, Vol.44 (2), p.1242-1267</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c841-f194575210b877cfe711d4d2408e21e8dbe7a5729f1eeba07b62f17e71fa6e393</citedby><cites>FETCH-LOGICAL-c841-f194575210b877cfe711d4d2408e21e8dbe7a5729f1eeba07b62f17e71fa6e393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dũng, Dinh</creatorcontrib><creatorcontrib>Kien Nguyen, Van</creatorcontrib><title>Optimal numerical integration and approximation of functions on ℝ d equipped with Gaussian measure</title><title>IMA journal of numerical analysis</title><description>We investigate the numerical approximation of integrals over $\mathbb{R}^{d}$ equipped with the standard Gaussian measure $\gamma $ for integrands belonging to the Gaussian-weighted Sobolev spaces $W^{\alpha }_{p}(\mathbb{R}^{d}, \gamma )$ of mixed smoothness $\alpha \in \mathbb{N}$ for $1 < p < \infty $. We prove the asymptotic order of the convergence of optimal quadratures based on $n$ integration nodes and propose a novel method for constructing asymptotically optimal quadratures. As for related problems, we establish by a similar technique the asymptotic order of the linear, Kolmogorov and sampling $n$-widths in the Gaussian-weighted space $L_{q}(\mathbb{R}^{d}, \gamma )$ of the unit ball of $W^{\alpha }_{p}(\mathbb{R}^{d}, \gamma )$ for $1 \leq q < p < \infty $ and $q=p=2$.</description><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkEFOwzAQRS0EEqWwZe0LpPU4TpwsUQWlUqVuuo-ceAxGjWPsRMCea3A5ToJLu5o_o_9HX4-Qe2ALYHW-tL1yU7_UQWlWwAWZgShFlpeCX5IZ45Jnopb1NbmJ8Y0xJkrJZkTv_JiCB5qiGGyXlHUjvgQ12sFR5TRV3ofhM5n-L4OhZnLdUUea9t_vH6opvk_We9T0w46vdK2mGK1ytEcVp4C35MqoQ8S785yT_dPjfvWcbXfrzephm3WVgMxALQpZcGBtJWVnUAJooblgFXLASrcoVSF5bQCxVUy2JTcgk82oEvM6n5PF6W0XhhgDmsaHVDt8NcCaI6LmhKg5I8r_ANyGX7U</recordid><startdate>20240403</startdate><enddate>20240403</enddate><creator>Dũng, Dinh</creator><creator>Kien Nguyen, Van</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240403</creationdate><title>Optimal numerical integration and approximation of functions on ℝ d equipped with Gaussian measure</title><author>Dũng, Dinh ; Kien Nguyen, Van</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c841-f194575210b877cfe711d4d2408e21e8dbe7a5729f1eeba07b62f17e71fa6e393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dũng, Dinh</creatorcontrib><creatorcontrib>Kien Nguyen, Van</creatorcontrib><collection>CrossRef</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dũng, Dinh</au><au>Kien Nguyen, Van</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal numerical integration and approximation of functions on ℝ d equipped with Gaussian measure</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2024-04-03</date><risdate>2024</risdate><volume>44</volume><issue>2</issue><spage>1242</spage><epage>1267</epage><pages>1242-1267</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><abstract>We investigate the numerical approximation of integrals over $\mathbb{R}^{d}$ equipped with the standard Gaussian measure $\gamma $ for integrands belonging to the Gaussian-weighted Sobolev spaces $W^{\alpha }_{p}(\mathbb{R}^{d}, \gamma )$ of mixed smoothness $\alpha \in \mathbb{N}$ for $1 < p < \infty $. We prove the asymptotic order of the convergence of optimal quadratures based on $n$ integration nodes and propose a novel method for constructing asymptotically optimal quadratures. As for related problems, we establish by a similar technique the asymptotic order of the linear, Kolmogorov and sampling $n$-widths in the Gaussian-weighted space $L_{q}(\mathbb{R}^{d}, \gamma )$ of the unit ball of $W^{\alpha }_{p}(\mathbb{R}^{d}, \gamma )$ for $1 \leq q < p < \infty $ and $q=p=2$.</abstract><doi>10.1093/imanum/drad051</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4979 |
ispartof | IMA journal of numerical analysis, 2024-04, Vol.44 (2), p.1242-1267 |
issn | 0272-4979 1464-3642 |
language | eng |
recordid | cdi_crossref_primary_10_1093_imanum_drad051 |
source | Oxford Journals Online |
title | Optimal numerical integration and approximation of functions on ℝ d equipped with Gaussian measure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A34%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20numerical%20integration%20and%20approximation%20of%20functions%20on%20%E2%84%9D%20d%20equipped%20with%20Gaussian%20measure&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=D%C5%A9ng,%20Dinh&rft.date=2024-04-03&rft.volume=44&rft.issue=2&rft.spage=1242&rft.epage=1267&rft.pages=1242-1267&rft.issn=0272-4979&rft.eissn=1464-3642&rft_id=info:doi/10.1093/imanum/drad051&rft_dat=%3Ccrossref%3E10_1093_imanum_drad051%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c841-f194575210b877cfe711d4d2408e21e8dbe7a5729f1eeba07b62f17e71fa6e393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |