Loading…

Domes over Curves

A closed piecewise linear curve is called integral if it is composed of unit intervals. Kenyon’s problem asks whether for every integral curve $\gamma $ in ${\mathbb{R}}^3$, there is a dome over $\gamma $, that is, whether $\gamma $ is a boundary of a polyhedral surface whose faces are equilateral t...

Full description

Saved in:
Bibliographic Details
Published in:International mathematics research notices 2022-09, Vol.2022 (18), p.14067-14104
Main Authors: Glazyrin, Alexey, Pak, Igor
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c235t-8d6f740aa7c13d5c4d1f00dddae01f6f452301d766e697d6beac28304d11efae3
cites cdi_FETCH-LOGICAL-c235t-8d6f740aa7c13d5c4d1f00dddae01f6f452301d766e697d6beac28304d11efae3
container_end_page 14104
container_issue 18
container_start_page 14067
container_title International mathematics research notices
container_volume 2022
creator Glazyrin, Alexey
Pak, Igor
description A closed piecewise linear curve is called integral if it is composed of unit intervals. Kenyon’s problem asks whether for every integral curve $\gamma $ in ${\mathbb{R}}^3$, there is a dome over $\gamma $, that is, whether $\gamma $ is a boundary of a polyhedral surface whose faces are equilateral triangles with unit edge lengths. First, we give an algebraic necessary condition when $\gamma $ is a quadrilateral, thus giving a negative solution to Kenyon’s problem in full generality. We then prove that domes exist over a dense set of integral curves. Finally, we give an explicit construction of domes over all regular $n$-gons.
doi_str_mv 10.1093/imrn/rnab138
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnab138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imrn_rnab138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-8d6f740aa7c13d5c4d1f00dddae01f6f452301d766e697d6beac28304d11efae3</originalsourceid><addsrcrecordid>eNotz8FqAjEUBdBQWqjVLgr9AD-gqe_lzSSZpYy1CoIbXYeYvICl45SkCv17lbq6d3G5cIR4RXhHaGiy7_Jhkg9-h2TvxAC1NRJUZe4vHQxJ0yj7KJ5K-QJQgJYG4mXWd1zG_YnzuD3mE5eReEj-u_DzLYdiO__YtAu5Wn8u2-lKBkX1r7RRJ1OB9yYgxTpUERNAjNEzYNKpqhUBRqM168ZEvWMflCW47JCTZxqKt__fkPtSMif3k_edz38OwV057spxNw6dAf59Pog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Domes over Curves</title><source>Oxford Journals Online</source><creator>Glazyrin, Alexey ; Pak, Igor</creator><creatorcontrib>Glazyrin, Alexey ; Pak, Igor</creatorcontrib><description>A closed piecewise linear curve is called integral if it is composed of unit intervals. Kenyon’s problem asks whether for every integral curve $\gamma $ in ${\mathbb{R}}^3$, there is a dome over $\gamma $, that is, whether $\gamma $ is a boundary of a polyhedral surface whose faces are equilateral triangles with unit edge lengths. First, we give an algebraic necessary condition when $\gamma $ is a quadrilateral, thus giving a negative solution to Kenyon’s problem in full generality. We then prove that domes exist over a dense set of integral curves. Finally, we give an explicit construction of domes over all regular $n$-gons.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnab138</identifier><language>eng</language><ispartof>International mathematics research notices, 2022-09, Vol.2022 (18), p.14067-14104</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c235t-8d6f740aa7c13d5c4d1f00dddae01f6f452301d766e697d6beac28304d11efae3</citedby><cites>FETCH-LOGICAL-c235t-8d6f740aa7c13d5c4d1f00dddae01f6f452301d766e697d6beac28304d11efae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Glazyrin, Alexey</creatorcontrib><creatorcontrib>Pak, Igor</creatorcontrib><title>Domes over Curves</title><title>International mathematics research notices</title><description>A closed piecewise linear curve is called integral if it is composed of unit intervals. Kenyon’s problem asks whether for every integral curve $\gamma $ in ${\mathbb{R}}^3$, there is a dome over $\gamma $, that is, whether $\gamma $ is a boundary of a polyhedral surface whose faces are equilateral triangles with unit edge lengths. First, we give an algebraic necessary condition when $\gamma $ is a quadrilateral, thus giving a negative solution to Kenyon’s problem in full generality. We then prove that domes exist over a dense set of integral curves. Finally, we give an explicit construction of domes over all regular $n$-gons.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotz8FqAjEUBdBQWqjVLgr9AD-gqe_lzSSZpYy1CoIbXYeYvICl45SkCv17lbq6d3G5cIR4RXhHaGiy7_Jhkg9-h2TvxAC1NRJUZe4vHQxJ0yj7KJ5K-QJQgJYG4mXWd1zG_YnzuD3mE5eReEj-u_DzLYdiO__YtAu5Wn8u2-lKBkX1r7RRJ1OB9yYgxTpUERNAjNEzYNKpqhUBRqM168ZEvWMflCW47JCTZxqKt__fkPtSMif3k_edz38OwV057spxNw6dAf59Pog</recordid><startdate>20220912</startdate><enddate>20220912</enddate><creator>Glazyrin, Alexey</creator><creator>Pak, Igor</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220912</creationdate><title>Domes over Curves</title><author>Glazyrin, Alexey ; Pak, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-8d6f740aa7c13d5c4d1f00dddae01f6f452301d766e697d6beac28304d11efae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glazyrin, Alexey</creatorcontrib><creatorcontrib>Pak, Igor</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glazyrin, Alexey</au><au>Pak, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domes over Curves</atitle><jtitle>International mathematics research notices</jtitle><date>2022-09-12</date><risdate>2022</risdate><volume>2022</volume><issue>18</issue><spage>14067</spage><epage>14104</epage><pages>14067-14104</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>A closed piecewise linear curve is called integral if it is composed of unit intervals. Kenyon’s problem asks whether for every integral curve $\gamma $ in ${\mathbb{R}}^3$, there is a dome over $\gamma $, that is, whether $\gamma $ is a boundary of a polyhedral surface whose faces are equilateral triangles with unit edge lengths. First, we give an algebraic necessary condition when $\gamma $ is a quadrilateral, thus giving a negative solution to Kenyon’s problem in full generality. We then prove that domes exist over a dense set of integral curves. Finally, we give an explicit construction of domes over all regular $n$-gons.</abstract><doi>10.1093/imrn/rnab138</doi><tpages>38</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International mathematics research notices, 2022-09, Vol.2022 (18), p.14067-14104
issn 1073-7928
1687-0247
language eng
recordid cdi_crossref_primary_10_1093_imrn_rnab138
source Oxford Journals Online
title Domes over Curves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domes%20over%20Curves&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Glazyrin,%20Alexey&rft.date=2022-09-12&rft.volume=2022&rft.issue=18&rft.spage=14067&rft.epage=14104&rft.pages=14067-14104&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnab138&rft_dat=%3Ccrossref%3E10_1093_imrn_rnab138%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c235t-8d6f740aa7c13d5c4d1f00dddae01f6f452301d766e697d6beac28304d11efae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true