Loading…

Strong Subconvexity for Self-Dual GL(3) L-Functions

Abstract In this paper, we prove strong subconvexity bounds for self-dual $\textrm {GL}(3)\ L$-functions in the $t$-aspect and for $\textrm {GL}(3)\times \textrm {GL}(2)$$L$-functions in the $\textrm {GL}(2)$-spectral aspect. The bounds are strong in the sense that they are the natural limit of the...

Full description

Saved in:
Bibliographic Details
Published in:International mathematics research notices 2023-06, Vol.2023 (13), p.11453-11470
Main Authors: Lin, Yongxiao, Nunes, Ramon, Qi, Zhi
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c267t-7ca6fd0cc86dd939e0f049383ef2665171014af786274fd1cde52e4bbf8ecf473
cites cdi_FETCH-LOGICAL-c267t-7ca6fd0cc86dd939e0f049383ef2665171014af786274fd1cde52e4bbf8ecf473
container_end_page 11470
container_issue 13
container_start_page 11453
container_title International mathematics research notices
container_volume 2023
creator Lin, Yongxiao
Nunes, Ramon
Qi, Zhi
description Abstract In this paper, we prove strong subconvexity bounds for self-dual $\textrm {GL}(3)\ L$-functions in the $t$-aspect and for $\textrm {GL}(3)\times \textrm {GL}(2)$$L$-functions in the $\textrm {GL}(2)$-spectral aspect. The bounds are strong in the sense that they are the natural limit of the moment method pioneered by Xiaoqing Li, modulo current knowledge on estimate for the second moment of $\textrm {GL}(3)$$L$-functions on the critical line.
doi_str_mv 10.1093/imrn/rnac153
format article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnac153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imrn/rnac153</oup_id><sourcerecordid>10.1093/imrn/rnac153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-7ca6fd0cc86dd939e0f049383ef2665171014af786274fd1cde52e4bbf8ecf473</originalsourceid><addsrcrecordid>eNp9j09LwzAchoMoOKc3P0BvKpjtlz9N0qNsbg4KHqrnkqaJVLpkJK24b-_Gdvb0voeHBx6E7gnMCBRs3m2jn0evDcnZBZoQoSQGyuXl4YNkWBZUXaOblL4BKBDFJohVQwz-K6vGxgT_Y3-7YZ-5ELPK9g4vR91n6_KRPWUlXo3eDF3w6RZdOd0ne3feKfpcvX4s3nD5vt4sXkpsqJADlkYL14IxSrRtwQoLDnjBFLOOCpETSYBw7aQSVHLXEtPanFreNE5Z47hkU_R88poYUorW1bvYbXXc1wTqY3B9DK7PwQf84YSHcfc_-Qdg6ldU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strong Subconvexity for Self-Dual GL(3) L-Functions</title><source>Oxford Journals Online</source><creator>Lin, Yongxiao ; Nunes, Ramon ; Qi, Zhi</creator><creatorcontrib>Lin, Yongxiao ; Nunes, Ramon ; Qi, Zhi</creatorcontrib><description>Abstract In this paper, we prove strong subconvexity bounds for self-dual $\textrm {GL}(3)\ L$-functions in the $t$-aspect and for $\textrm {GL}(3)\times \textrm {GL}(2)$$L$-functions in the $\textrm {GL}(2)$-spectral aspect. The bounds are strong in the sense that they are the natural limit of the moment method pioneered by Xiaoqing Li, modulo current knowledge on estimate for the second moment of $\textrm {GL}(3)$$L$-functions on the critical line.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnac153</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>International mathematics research notices, 2023-06, Vol.2023 (13), p.11453-11470</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-7ca6fd0cc86dd939e0f049383ef2665171014af786274fd1cde52e4bbf8ecf473</citedby><cites>FETCH-LOGICAL-c267t-7ca6fd0cc86dd939e0f049383ef2665171014af786274fd1cde52e4bbf8ecf473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Lin, Yongxiao</creatorcontrib><creatorcontrib>Nunes, Ramon</creatorcontrib><creatorcontrib>Qi, Zhi</creatorcontrib><title>Strong Subconvexity for Self-Dual GL(3) L-Functions</title><title>International mathematics research notices</title><description>Abstract In this paper, we prove strong subconvexity bounds for self-dual $\textrm {GL}(3)\ L$-functions in the $t$-aspect and for $\textrm {GL}(3)\times \textrm {GL}(2)$$L$-functions in the $\textrm {GL}(2)$-spectral aspect. The bounds are strong in the sense that they are the natural limit of the moment method pioneered by Xiaoqing Li, modulo current knowledge on estimate for the second moment of $\textrm {GL}(3)$$L$-functions on the critical line.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j09LwzAchoMoOKc3P0BvKpjtlz9N0qNsbg4KHqrnkqaJVLpkJK24b-_Gdvb0voeHBx6E7gnMCBRs3m2jn0evDcnZBZoQoSQGyuXl4YNkWBZUXaOblL4BKBDFJohVQwz-K6vGxgT_Y3-7YZ-5ELPK9g4vR91n6_KRPWUlXo3eDF3w6RZdOd0ne3feKfpcvX4s3nD5vt4sXkpsqJADlkYL14IxSrRtwQoLDnjBFLOOCpETSYBw7aQSVHLXEtPanFreNE5Z47hkU_R88poYUorW1bvYbXXc1wTqY3B9DK7PwQf84YSHcfc_-Qdg6ldU</recordid><startdate>20230626</startdate><enddate>20230626</enddate><creator>Lin, Yongxiao</creator><creator>Nunes, Ramon</creator><creator>Qi, Zhi</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230626</creationdate><title>Strong Subconvexity for Self-Dual GL(3) L-Functions</title><author>Lin, Yongxiao ; Nunes, Ramon ; Qi, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-7ca6fd0cc86dd939e0f049383ef2665171014af786274fd1cde52e4bbf8ecf473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yongxiao</creatorcontrib><creatorcontrib>Nunes, Ramon</creatorcontrib><creatorcontrib>Qi, Zhi</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yongxiao</au><au>Nunes, Ramon</au><au>Qi, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Subconvexity for Self-Dual GL(3) L-Functions</atitle><jtitle>International mathematics research notices</jtitle><date>2023-06-26</date><risdate>2023</risdate><volume>2023</volume><issue>13</issue><spage>11453</spage><epage>11470</epage><pages>11453-11470</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>Abstract In this paper, we prove strong subconvexity bounds for self-dual $\textrm {GL}(3)\ L$-functions in the $t$-aspect and for $\textrm {GL}(3)\times \textrm {GL}(2)$$L$-functions in the $\textrm {GL}(2)$-spectral aspect. The bounds are strong in the sense that they are the natural limit of the moment method pioneered by Xiaoqing Li, modulo current knowledge on estimate for the second moment of $\textrm {GL}(3)$$L$-functions on the critical line.</abstract><pub>Oxford University Press</pub><doi>10.1093/imrn/rnac153</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International mathematics research notices, 2023-06, Vol.2023 (13), p.11453-11470
issn 1073-7928
1687-0247
language eng
recordid cdi_crossref_primary_10_1093_imrn_rnac153
source Oxford Journals Online
title Strong Subconvexity for Self-Dual GL(3) L-Functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Subconvexity%20for%20Self-Dual%20GL(3)%20L-Functions&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Lin,%20Yongxiao&rft.date=2023-06-26&rft.volume=2023&rft.issue=13&rft.spage=11453&rft.epage=11470&rft.pages=11453-11470&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnac153&rft_dat=%3Coup_cross%3E10.1093/imrn/rnac153%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-7ca6fd0cc86dd939e0f049383ef2665171014af786274fd1cde52e4bbf8ecf473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imrn/rnac153&rfr_iscdi=true