Loading…
Bicritical Rational Maps With a Common Iterate
Abstract Let $f$ be a degree $d$ bicritical rational map with critical point set $\mathcal{C}_f$ and critical value set $\mathcal{V}_f$. Using the group $\textrm{Deck}(f^k)$ of deck transformations of $f^k$, we show that if $g$ is a bicritical rational map that shares an iterate with $f$, then $\mat...
Saved in:
Published in: | International mathematics research notices 2024-01, Vol.2024 (2), p.1568-1605 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Let $f$ be a degree $d$ bicritical rational map with critical point set $\mathcal{C}_f$ and critical value set $\mathcal{V}_f$. Using the group $\textrm{Deck}(f^k)$ of deck transformations of $f^k$, we show that if $g$ is a bicritical rational map that shares an iterate with $f$, then $\mathcal{C}_f = \mathcal{C}_g$ and $\mathcal{V}_f = \mathcal{V}_g$. Using this, we show that if two bicritical rational maps of even degree $d$ share an iterate, then they share a second iterate, and both maps belong to the symmetry locus of degree $d$ bicritical rational maps. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnad041 |