Loading…
On Symplectic Birational Self-Maps of Projective Hyperkähler Manifolds of K3[n]-Type
Abstract We prove that projective hyperkähler manifolds of K3$^{[n]}$-type admitting a non-trivial symplectic birational self-map of finite order are isomorphic to moduli spaces of stable (twisted) coherent sheaves on K3 surfaces. Motivated by this result, we analyze the reflections on the movable c...
Saved in:
Published in: | International mathematics research notices 2024-08, Vol.2024 (15), p.11064-11081 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c192t-5ad3b096e631579104e5bc6de78ae1da06dce9429b38171020fdc2b25fb135a53 |
container_end_page | 11081 |
container_issue | 15 |
container_start_page | 11064 |
container_title | International mathematics research notices |
container_volume | 2024 |
creator | Dutta, Yajnaseni Mattei, Dominique Prieto-Montañez, Yulieth |
description | Abstract
We prove that projective hyperkähler manifolds of K3$^{[n]}$-type admitting a non-trivial symplectic birational self-map of finite order are isomorphic to moduli spaces of stable (twisted) coherent sheaves on K3 surfaces. Motivated by this result, we analyze the reflections on the movable cone of moduli spaces of sheaves and determine when they come from a birational involution. |
doi_str_mv | 10.1093/imrn/rnae112 |
format | article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnae112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imrn/rnae112</oup_id><sourcerecordid>10.1093/imrn/rnae112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c192t-5ad3b096e631579104e5bc6de78ae1da06dce9429b38171020fdc2b25fb135a53</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqWw4wDescHUY8dxvIQKKKJVkdquEIocxxYpbhI5ASn34SZcjIR2zWpGmqfR_w-hS6A3QBWfFLtQTkKpLQA7QiOIE0koi-Rxv1PJiVQsOUVnTbOllFFI-AhtliVedbvaW9MWBt8VQbdFVWqPV9Y7stB1gyuHX0K1HYgvi2ddbcPHz_e7twEvdFm4yud_0DN_Ld_Iur-foxOnfWMvDnOMNg_36-mMzJePT9PbOTGgWEuEznlGVWxjDkIqoJEVmYlzK5O-Q65pnBurIqYynoCEPrPLDcuYcBlwoQUfo-v9XxOqpgnWpXUodjp0KdB0UJIOStKDkh6_2uPVZ_0_-QuhS2SG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Symplectic Birational Self-Maps of Projective Hyperkähler Manifolds of K3[n]-Type</title><source>Oxford Journals Online</source><creator>Dutta, Yajnaseni ; Mattei, Dominique ; Prieto-Montañez, Yulieth</creator><creatorcontrib>Dutta, Yajnaseni ; Mattei, Dominique ; Prieto-Montañez, Yulieth</creatorcontrib><description>Abstract
We prove that projective hyperkähler manifolds of K3$^{[n]}$-type admitting a non-trivial symplectic birational self-map of finite order are isomorphic to moduli spaces of stable (twisted) coherent sheaves on K3 surfaces. Motivated by this result, we analyze the reflections on the movable cone of moduli spaces of sheaves and determine when they come from a birational involution.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnae112</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>International mathematics research notices, 2024-08, Vol.2024 (15), p.11064-11081</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c192t-5ad3b096e631579104e5bc6de78ae1da06dce9429b38171020fdc2b25fb135a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dutta, Yajnaseni</creatorcontrib><creatorcontrib>Mattei, Dominique</creatorcontrib><creatorcontrib>Prieto-Montañez, Yulieth</creatorcontrib><title>On Symplectic Birational Self-Maps of Projective Hyperkähler Manifolds of K3[n]-Type</title><title>International mathematics research notices</title><description>Abstract
We prove that projective hyperkähler manifolds of K3$^{[n]}$-type admitting a non-trivial symplectic birational self-map of finite order are isomorphic to moduli spaces of stable (twisted) coherent sheaves on K3 surfaces. Motivated by this result, we analyze the reflections on the movable cone of moduli spaces of sheaves and determine when they come from a birational involution.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EEqWw4wDescHUY8dxvIQKKKJVkdquEIocxxYpbhI5ASn34SZcjIR2zWpGmqfR_w-hS6A3QBWfFLtQTkKpLQA7QiOIE0koi-Rxv1PJiVQsOUVnTbOllFFI-AhtliVedbvaW9MWBt8VQbdFVWqPV9Y7stB1gyuHX0K1HYgvi2ddbcPHz_e7twEvdFm4yud_0DN_Ld_Iur-foxOnfWMvDnOMNg_36-mMzJePT9PbOTGgWEuEznlGVWxjDkIqoJEVmYlzK5O-Q65pnBurIqYynoCEPrPLDcuYcBlwoQUfo-v9XxOqpgnWpXUodjp0KdB0UJIOStKDkh6_2uPVZ_0_-QuhS2SG</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Dutta, Yajnaseni</creator><creator>Mattei, Dominique</creator><creator>Prieto-Montañez, Yulieth</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240807</creationdate><title>On Symplectic Birational Self-Maps of Projective Hyperkähler Manifolds of K3[n]-Type</title><author>Dutta, Yajnaseni ; Mattei, Dominique ; Prieto-Montañez, Yulieth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c192t-5ad3b096e631579104e5bc6de78ae1da06dce9429b38171020fdc2b25fb135a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Yajnaseni</creatorcontrib><creatorcontrib>Mattei, Dominique</creatorcontrib><creatorcontrib>Prieto-Montañez, Yulieth</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Yajnaseni</au><au>Mattei, Dominique</au><au>Prieto-Montañez, Yulieth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Symplectic Birational Self-Maps of Projective Hyperkähler Manifolds of K3[n]-Type</atitle><jtitle>International mathematics research notices</jtitle><date>2024-08-07</date><risdate>2024</risdate><volume>2024</volume><issue>15</issue><spage>11064</spage><epage>11081</epage><pages>11064-11081</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>Abstract
We prove that projective hyperkähler manifolds of K3$^{[n]}$-type admitting a non-trivial symplectic birational self-map of finite order are isomorphic to moduli spaces of stable (twisted) coherent sheaves on K3 surfaces. Motivated by this result, we analyze the reflections on the movable cone of moduli spaces of sheaves and determine when they come from a birational involution.</abstract><pub>Oxford University Press</pub><doi>10.1093/imrn/rnae112</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-7928 |
ispartof | International mathematics research notices, 2024-08, Vol.2024 (15), p.11064-11081 |
issn | 1073-7928 1687-0247 |
language | eng |
recordid | cdi_crossref_primary_10_1093_imrn_rnae112 |
source | Oxford Journals Online |
title | On Symplectic Birational Self-Maps of Projective Hyperkähler Manifolds of K3[n]-Type |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Symplectic%20Birational%20Self-Maps%20of%20Projective%20Hyperk%C3%A4hler%20Manifolds%20of%20K3%5Bn%5D-Type&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Dutta,%20Yajnaseni&rft.date=2024-08-07&rft.volume=2024&rft.issue=15&rft.spage=11064&rft.epage=11081&rft.pages=11064-11081&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnae112&rft_dat=%3Coup_cross%3E10.1093/imrn/rnae112%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c192t-5ad3b096e631579104e5bc6de78ae1da06dce9429b38171020fdc2b25fb135a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imrn/rnae112&rfr_iscdi=true |