Loading…

On Symplectic Birational Self-Maps of Projective Hyperkähler Manifolds of K3[n]-Type

Abstract We prove that projective hyperkähler manifolds of K3$^{[n]}$-type admitting a non-trivial symplectic birational self-map of finite order are isomorphic to moduli spaces of stable (twisted) coherent sheaves on K3 surfaces. Motivated by this result, we analyze the reflections on the movable c...

Full description

Saved in:
Bibliographic Details
Published in:International mathematics research notices 2024-08, Vol.2024 (15), p.11064-11081
Main Authors: Dutta, Yajnaseni, Mattei, Dominique, Prieto-Montañez, Yulieth
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c192t-5ad3b096e631579104e5bc6de78ae1da06dce9429b38171020fdc2b25fb135a53
container_end_page 11081
container_issue 15
container_start_page 11064
container_title International mathematics research notices
container_volume 2024
creator Dutta, Yajnaseni
Mattei, Dominique
Prieto-Montañez, Yulieth
description Abstract We prove that projective hyperkähler manifolds of K3$^{[n]}$-type admitting a non-trivial symplectic birational self-map of finite order are isomorphic to moduli spaces of stable (twisted) coherent sheaves on K3 surfaces. Motivated by this result, we analyze the reflections on the movable cone of moduli spaces of sheaves and determine when they come from a birational involution.
doi_str_mv 10.1093/imrn/rnae112
format article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnae112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imrn/rnae112</oup_id><sourcerecordid>10.1093/imrn/rnae112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c192t-5ad3b096e631579104e5bc6de78ae1da06dce9429b38171020fdc2b25fb135a53</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqWw4wDescHUY8dxvIQKKKJVkdquEIocxxYpbhI5ASn34SZcjIR2zWpGmqfR_w-hS6A3QBWfFLtQTkKpLQA7QiOIE0koi-Rxv1PJiVQsOUVnTbOllFFI-AhtliVedbvaW9MWBt8VQbdFVWqPV9Y7stB1gyuHX0K1HYgvi2ddbcPHz_e7twEvdFm4yud_0DN_Ld_Iur-foxOnfWMvDnOMNg_36-mMzJePT9PbOTGgWEuEznlGVWxjDkIqoJEVmYlzK5O-Q65pnBurIqYynoCEPrPLDcuYcBlwoQUfo-v9XxOqpgnWpXUodjp0KdB0UJIOStKDkh6_2uPVZ_0_-QuhS2SG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Symplectic Birational Self-Maps of Projective Hyperkähler Manifolds of K3[n]-Type</title><source>Oxford Journals Online</source><creator>Dutta, Yajnaseni ; Mattei, Dominique ; Prieto-Montañez, Yulieth</creator><creatorcontrib>Dutta, Yajnaseni ; Mattei, Dominique ; Prieto-Montañez, Yulieth</creatorcontrib><description>Abstract We prove that projective hyperkähler manifolds of K3$^{[n]}$-type admitting a non-trivial symplectic birational self-map of finite order are isomorphic to moduli spaces of stable (twisted) coherent sheaves on K3 surfaces. Motivated by this result, we analyze the reflections on the movable cone of moduli spaces of sheaves and determine when they come from a birational involution.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnae112</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>International mathematics research notices, 2024-08, Vol.2024 (15), p.11064-11081</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c192t-5ad3b096e631579104e5bc6de78ae1da06dce9429b38171020fdc2b25fb135a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dutta, Yajnaseni</creatorcontrib><creatorcontrib>Mattei, Dominique</creatorcontrib><creatorcontrib>Prieto-Montañez, Yulieth</creatorcontrib><title>On Symplectic Birational Self-Maps of Projective Hyperkähler Manifolds of K3[n]-Type</title><title>International mathematics research notices</title><description>Abstract We prove that projective hyperkähler manifolds of K3$^{[n]}$-type admitting a non-trivial symplectic birational self-map of finite order are isomorphic to moduli spaces of stable (twisted) coherent sheaves on K3 surfaces. Motivated by this result, we analyze the reflections on the movable cone of moduli spaces of sheaves and determine when they come from a birational involution.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EEqWw4wDescHUY8dxvIQKKKJVkdquEIocxxYpbhI5ASn34SZcjIR2zWpGmqfR_w-hS6A3QBWfFLtQTkKpLQA7QiOIE0koi-Rxv1PJiVQsOUVnTbOllFFI-AhtliVedbvaW9MWBt8VQbdFVWqPV9Y7stB1gyuHX0K1HYgvi2ddbcPHz_e7twEvdFm4yud_0DN_Ld_Iur-foxOnfWMvDnOMNg_36-mMzJePT9PbOTGgWEuEznlGVWxjDkIqoJEVmYlzK5O-Q65pnBurIqYynoCEPrPLDcuYcBlwoQUfo-v9XxOqpgnWpXUodjp0KdB0UJIOStKDkh6_2uPVZ_0_-QuhS2SG</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Dutta, Yajnaseni</creator><creator>Mattei, Dominique</creator><creator>Prieto-Montañez, Yulieth</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240807</creationdate><title>On Symplectic Birational Self-Maps of Projective Hyperkähler Manifolds of K3[n]-Type</title><author>Dutta, Yajnaseni ; Mattei, Dominique ; Prieto-Montañez, Yulieth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c192t-5ad3b096e631579104e5bc6de78ae1da06dce9429b38171020fdc2b25fb135a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Yajnaseni</creatorcontrib><creatorcontrib>Mattei, Dominique</creatorcontrib><creatorcontrib>Prieto-Montañez, Yulieth</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Yajnaseni</au><au>Mattei, Dominique</au><au>Prieto-Montañez, Yulieth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Symplectic Birational Self-Maps of Projective Hyperkähler Manifolds of K3[n]-Type</atitle><jtitle>International mathematics research notices</jtitle><date>2024-08-07</date><risdate>2024</risdate><volume>2024</volume><issue>15</issue><spage>11064</spage><epage>11081</epage><pages>11064-11081</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>Abstract We prove that projective hyperkähler manifolds of K3$^{[n]}$-type admitting a non-trivial symplectic birational self-map of finite order are isomorphic to moduli spaces of stable (twisted) coherent sheaves on K3 surfaces. Motivated by this result, we analyze the reflections on the movable cone of moduli spaces of sheaves and determine when they come from a birational involution.</abstract><pub>Oxford University Press</pub><doi>10.1093/imrn/rnae112</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International mathematics research notices, 2024-08, Vol.2024 (15), p.11064-11081
issn 1073-7928
1687-0247
language eng
recordid cdi_crossref_primary_10_1093_imrn_rnae112
source Oxford Journals Online
title On Symplectic Birational Self-Maps of Projective Hyperkähler Manifolds of K3[n]-Type
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Symplectic%20Birational%20Self-Maps%20of%20Projective%20Hyperk%C3%A4hler%20Manifolds%20of%20K3%5Bn%5D-Type&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Dutta,%20Yajnaseni&rft.date=2024-08-07&rft.volume=2024&rft.issue=15&rft.spage=11064&rft.epage=11081&rft.pages=11064-11081&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnae112&rft_dat=%3Coup_cross%3E10.1093/imrn/rnae112%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c192t-5ad3b096e631579104e5bc6de78ae1da06dce9429b38171020fdc2b25fb135a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imrn/rnae112&rfr_iscdi=true