Loading…
Statistics for Traces of Cyclic Trigonal Curves over Finite Fields
We study the variation of the trace of the Frobenius endomorphism associated to a cyclic trigonal curve of genus g over as the curve varies in an irreducible component of the moduli space. We show that for q fixed and g increasing, the limiting distribution of the trace of Frobenius equals the sum o...
Saved in:
Published in: | International mathematics research notices 2010, Vol.2010 (5), p.932-967 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c302t-a119577ff061631988c15a44d22091996a7002c9f07a49f326257b0e966402543 |
---|---|
cites | cdi_FETCH-LOGICAL-c302t-a119577ff061631988c15a44d22091996a7002c9f07a49f326257b0e966402543 |
container_end_page | 967 |
container_issue | 5 |
container_start_page | 932 |
container_title | International mathematics research notices |
container_volume | 2010 |
creator | Bucur, Alina David, Chantal Feigon, Brooke Lalín, Matilde |
description | We study the variation of the trace of the Frobenius endomorphism associated to a cyclic trigonal curve of genus g over as the curve varies in an irreducible component of the moduli space. We show that for q fixed and g increasing, the limiting distribution of the trace of Frobenius equals the sum of q + 1 independent random variables taking the value 0 with probability 2/(q + 2) and 1, e2π i/3, e4π i/3 each with probability q/(3(q + 2)). This extends the work of Kurlberg and Rudnick who considered the same limit for hyperelliptic curves. We also show that when both g and q go to infinity, the normalized trace has a standard complex Gaussian distribution and how to generalize these results to p-fold covers of the projective line. |
doi_str_mv | 10.1093/imrn/rnp162 |
format | article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnp162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imrn/rnp162</oup_id><sourcerecordid>10.1093/imrn/rnp162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-a119577ff061631988c15a44d22091996a7002c9f07a49f326257b0e966402543</originalsourceid><addsrcrecordid>eNqFkMFKAzEQhoMoWKsnX2BPXmTtTJJNNkddrBWKglYULyGmiUTX3ZJsi317t6x49fQPMx_DfEPIKcIFgmKT8BWbSWxWKOgeGaEoZQ6Uy_2-BslyqWh5SI5S-gCggCUbkavHznQhdcGmzLcxW0RjXcpan1VbWwfbN8J725g6q9Zxs5tsXMymoQmd68PVy3RMDrypkzv5zTF5ml4vqlk-v7-5rS7nuWVAu9wgqkJK70GgYKjK0mJhOF9SCgqVEkb2V1nlQRquPKOCFvINnBKCAy04G5PzYa-NbUrReb2K4cvErUbQO32909eDfk-fDXS7Xv0D5gPYf8F9_6EmfmohmSz07OVV84e7Ocdn0Iz9AEezaRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Statistics for Traces of Cyclic Trigonal Curves over Finite Fields</title><source>Oxford Journals Online</source><creator>Bucur, Alina ; David, Chantal ; Feigon, Brooke ; Lalín, Matilde</creator><creatorcontrib>Bucur, Alina ; David, Chantal ; Feigon, Brooke ; Lalín, Matilde</creatorcontrib><description>We study the variation of the trace of the Frobenius endomorphism associated to a cyclic trigonal curve of genus g over as the curve varies in an irreducible component of the moduli space. We show that for q fixed and g increasing, the limiting distribution of the trace of Frobenius equals the sum of q + 1 independent random variables taking the value 0 with probability 2/(q + 2) and 1, e2π i/3, e4π i/3 each with probability q/(3(q + 2)). This extends the work of Kurlberg and Rudnick who considered the same limit for hyperelliptic curves. We also show that when both g and q go to infinity, the normalized trace has a standard complex Gaussian distribution and how to generalize these results to p-fold covers of the projective line.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnp162</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>International mathematics research notices, 2010, Vol.2010 (5), p.932-967</ispartof><rights>Oxford University Press © The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-a119577ff061631988c15a44d22091996a7002c9f07a49f326257b0e966402543</citedby><cites>FETCH-LOGICAL-c302t-a119577ff061631988c15a44d22091996a7002c9f07a49f326257b0e966402543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,4012,27910,27911,27912</link.rule.ids></links><search><creatorcontrib>Bucur, Alina</creatorcontrib><creatorcontrib>David, Chantal</creatorcontrib><creatorcontrib>Feigon, Brooke</creatorcontrib><creatorcontrib>Lalín, Matilde</creatorcontrib><title>Statistics for Traces of Cyclic Trigonal Curves over Finite Fields</title><title>International mathematics research notices</title><description>We study the variation of the trace of the Frobenius endomorphism associated to a cyclic trigonal curve of genus g over as the curve varies in an irreducible component of the moduli space. We show that for q fixed and g increasing, the limiting distribution of the trace of Frobenius equals the sum of q + 1 independent random variables taking the value 0 with probability 2/(q + 2) and 1, e2π i/3, e4π i/3 each with probability q/(3(q + 2)). This extends the work of Kurlberg and Rudnick who considered the same limit for hyperelliptic curves. We also show that when both g and q go to infinity, the normalized trace has a standard complex Gaussian distribution and how to generalize these results to p-fold covers of the projective line.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKAzEQhoMoWKsnX2BPXmTtTJJNNkddrBWKglYULyGmiUTX3ZJsi317t6x49fQPMx_DfEPIKcIFgmKT8BWbSWxWKOgeGaEoZQ6Uy_2-BslyqWh5SI5S-gCggCUbkavHznQhdcGmzLcxW0RjXcpan1VbWwfbN8J725g6q9Zxs5tsXMymoQmd68PVy3RMDrypkzv5zTF5ml4vqlk-v7-5rS7nuWVAu9wgqkJK70GgYKjK0mJhOF9SCgqVEkb2V1nlQRquPKOCFvINnBKCAy04G5PzYa-NbUrReb2K4cvErUbQO32909eDfk-fDXS7Xv0D5gPYf8F9_6EmfmohmSz07OVV84e7Ocdn0Iz9AEezaRo</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Bucur, Alina</creator><creator>David, Chantal</creator><creator>Feigon, Brooke</creator><creator>Lalín, Matilde</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2010</creationdate><title>Statistics for Traces of Cyclic Trigonal Curves over Finite Fields</title><author>Bucur, Alina ; David, Chantal ; Feigon, Brooke ; Lalín, Matilde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-a119577ff061631988c15a44d22091996a7002c9f07a49f326257b0e966402543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bucur, Alina</creatorcontrib><creatorcontrib>David, Chantal</creatorcontrib><creatorcontrib>Feigon, Brooke</creatorcontrib><creatorcontrib>Lalín, Matilde</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bucur, Alina</au><au>David, Chantal</au><au>Feigon, Brooke</au><au>Lalín, Matilde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistics for Traces of Cyclic Trigonal Curves over Finite Fields</atitle><jtitle>International mathematics research notices</jtitle><date>2010</date><risdate>2010</risdate><volume>2010</volume><issue>5</issue><spage>932</spage><epage>967</epage><pages>932-967</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>We study the variation of the trace of the Frobenius endomorphism associated to a cyclic trigonal curve of genus g over as the curve varies in an irreducible component of the moduli space. We show that for q fixed and g increasing, the limiting distribution of the trace of Frobenius equals the sum of q + 1 independent random variables taking the value 0 with probability 2/(q + 2) and 1, e2π i/3, e4π i/3 each with probability q/(3(q + 2)). This extends the work of Kurlberg and Rudnick who considered the same limit for hyperelliptic curves. We also show that when both g and q go to infinity, the normalized trace has a standard complex Gaussian distribution and how to generalize these results to p-fold covers of the projective line.</abstract><pub>Oxford University Press</pub><doi>10.1093/imrn/rnp162</doi><tpages>36</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-7928 |
ispartof | International mathematics research notices, 2010, Vol.2010 (5), p.932-967 |
issn | 1073-7928 1687-0247 |
language | eng |
recordid | cdi_crossref_primary_10_1093_imrn_rnp162 |
source | Oxford Journals Online |
title | Statistics for Traces of Cyclic Trigonal Curves over Finite Fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistics%20for%20Traces%20of%20Cyclic%20Trigonal%20Curves%20over%20Finite%20Fields&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Bucur,%20Alina&rft.date=2010&rft.volume=2010&rft.issue=5&rft.spage=932&rft.epage=967&rft.pages=932-967&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnp162&rft_dat=%3Coup_cross%3E10.1093/imrn/rnp162%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c302t-a119577ff061631988c15a44d22091996a7002c9f07a49f326257b0e966402543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imrn/rnp162&rfr_iscdi=true |