Loading…

Detecting Large Simple Rational Hecke Modules for Γ0(N) via Congruences

We describe a novel method for bounding the dimension $d$ of the largest simple Hecke submodule of $S_{2}(\Gamma _{0}(N);\mathbb{Q})$ from below. Such bounds are of interest because of their relevance to the structure of $J_{0}(N)$, for instance. In contrast with previous results of this kind, our b...

Full description

Saved in:
Bibliographic Details
Published in:International mathematics research notices 2020-10, Vol.2020 (19), p.6149-6168
Main Authors: Lipnowski, Michael, Schaeffer, George J
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c106t-a355a870198cbc9d5919e8b5fef5e2ec9b1ba9b425f5fd8b2f0ca5526bcaef953
container_end_page 6168
container_issue 19
container_start_page 6149
container_title International mathematics research notices
container_volume 2020
creator Lipnowski, Michael
Schaeffer, George J
description We describe a novel method for bounding the dimension $d$ of the largest simple Hecke submodule of $S_{2}(\Gamma _{0}(N);\mathbb{Q})$ from below. Such bounds are of interest because of their relevance to the structure of $J_{0}(N)$, for instance. In contrast with previous results of this kind, our bound does not rely on the equidistribution of Hecke eigenvalues. Instead, it is obtained via a Hecke-compatible congruence between the target space and a space of modular forms whose Hecke eigenvalues are easily controlled. We prove conditional bounds, the strongest of which is $d\gg _{\epsilon } N^{1/2-\epsilon }$ over a large set of primes $N$, contingent on Soundararajan’s heuristics for the class number problem and Artin’s conjecture on primitive roots. For prime levels $N\equiv 7\mod 8,$ our method yields an unconditional bound of $d\geq \log _{2}\log _{2}(\frac{N}{8})$, which is larger than the known bound of $d\gg \sqrt{\log \log N}$ due to Murty–Sinha and Royer. A stronger unconditional bound of $d\gg \log N$ can be obtained in more specialized (but infinitely many) cases. We also propose a number of Maeda-style conjectures based on our data, and we outline a possible congruence-based approach toward the conjectural Hecke simplicity of $S_{k}(\textrm{SL}_{2}(\mathbb{Z});\mathbb{Q})$.
doi_str_mv 10.1093/imrn/rny190
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rny190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imrn_rny190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c106t-a355a870198cbc9d5919e8b5fef5e2ec9b1ba9b425f5fd8b2f0ca5526bcaef953</originalsourceid><addsrcrecordid>eNot0EtOwzAUhWELgUQpjNiAhyAUeu3UiT1EoRCkABKPcWQ715Ehj8pOkboO9sWaoCqj84_O4CPknME1A5UufB-GRRi2TMEBmbFM5gnwZX7415CnSa64PCYnMX4AcGAynZHyFie0kx9aWunQIn31_bpD-qInPw66oyXaT6SPY7PpMFI3BvrzDRdPl_TLa1qMQxs2OFiMp-TI6S7i2f_Oyfvd6q0ok-r5_qG4qRLLIJsSnQqhZQ5MSWusaoRiCqURDp1AjlYZZrQySy6ccI003IHVQvDMWI1OiXROrva_NowxBnT1Ovheh23NoN4h1DuEeo-Q_gJ2nVJu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detecting Large Simple Rational Hecke Modules for Γ0(N) via Congruences</title><source>Oxford Journals Online</source><creator>Lipnowski, Michael ; Schaeffer, George J</creator><creatorcontrib>Lipnowski, Michael ; Schaeffer, George J</creatorcontrib><description>We describe a novel method for bounding the dimension $d$ of the largest simple Hecke submodule of $S_{2}(\Gamma _{0}(N);\mathbb{Q})$ from below. Such bounds are of interest because of their relevance to the structure of $J_{0}(N)$, for instance. In contrast with previous results of this kind, our bound does not rely on the equidistribution of Hecke eigenvalues. Instead, it is obtained via a Hecke-compatible congruence between the target space and a space of modular forms whose Hecke eigenvalues are easily controlled. We prove conditional bounds, the strongest of which is $d\gg _{\epsilon } N^{1/2-\epsilon }$ over a large set of primes $N$, contingent on Soundararajan’s heuristics for the class number problem and Artin’s conjecture on primitive roots. For prime levels $N\equiv 7\mod 8,$ our method yields an unconditional bound of $d\geq \log _{2}\log _{2}(\frac{N}{8})$, which is larger than the known bound of $d\gg \sqrt{\log \log N}$ due to Murty–Sinha and Royer. A stronger unconditional bound of $d\gg \log N$ can be obtained in more specialized (but infinitely many) cases. We also propose a number of Maeda-style conjectures based on our data, and we outline a possible congruence-based approach toward the conjectural Hecke simplicity of $S_{k}(\textrm{SL}_{2}(\mathbb{Z});\mathbb{Q})$.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rny190</identifier><language>eng</language><ispartof>International mathematics research notices, 2020-10, Vol.2020 (19), p.6149-6168</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c106t-a355a870198cbc9d5919e8b5fef5e2ec9b1ba9b425f5fd8b2f0ca5526bcaef953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lipnowski, Michael</creatorcontrib><creatorcontrib>Schaeffer, George J</creatorcontrib><title>Detecting Large Simple Rational Hecke Modules for Γ0(N) via Congruences</title><title>International mathematics research notices</title><description>We describe a novel method for bounding the dimension $d$ of the largest simple Hecke submodule of $S_{2}(\Gamma _{0}(N);\mathbb{Q})$ from below. Such bounds are of interest because of their relevance to the structure of $J_{0}(N)$, for instance. In contrast with previous results of this kind, our bound does not rely on the equidistribution of Hecke eigenvalues. Instead, it is obtained via a Hecke-compatible congruence between the target space and a space of modular forms whose Hecke eigenvalues are easily controlled. We prove conditional bounds, the strongest of which is $d\gg _{\epsilon } N^{1/2-\epsilon }$ over a large set of primes $N$, contingent on Soundararajan’s heuristics for the class number problem and Artin’s conjecture on primitive roots. For prime levels $N\equiv 7\mod 8,$ our method yields an unconditional bound of $d\geq \log _{2}\log _{2}(\frac{N}{8})$, which is larger than the known bound of $d\gg \sqrt{\log \log N}$ due to Murty–Sinha and Royer. A stronger unconditional bound of $d\gg \log N$ can be obtained in more specialized (but infinitely many) cases. We also propose a number of Maeda-style conjectures based on our data, and we outline a possible congruence-based approach toward the conjectural Hecke simplicity of $S_{k}(\textrm{SL}_{2}(\mathbb{Z});\mathbb{Q})$.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNot0EtOwzAUhWELgUQpjNiAhyAUeu3UiT1EoRCkABKPcWQ715Ehj8pOkboO9sWaoCqj84_O4CPknME1A5UufB-GRRi2TMEBmbFM5gnwZX7415CnSa64PCYnMX4AcGAynZHyFie0kx9aWunQIn31_bpD-qInPw66oyXaT6SPY7PpMFI3BvrzDRdPl_TLa1qMQxs2OFiMp-TI6S7i2f_Oyfvd6q0ok-r5_qG4qRLLIJsSnQqhZQ5MSWusaoRiCqURDp1AjlYZZrQySy6ccI003IHVQvDMWI1OiXROrva_NowxBnT1Ovheh23NoN4h1DuEeo-Q_gJ2nVJu</recordid><startdate>20201009</startdate><enddate>20201009</enddate><creator>Lipnowski, Michael</creator><creator>Schaeffer, George J</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201009</creationdate><title>Detecting Large Simple Rational Hecke Modules for Γ0(N) via Congruences</title><author>Lipnowski, Michael ; Schaeffer, George J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c106t-a355a870198cbc9d5919e8b5fef5e2ec9b1ba9b425f5fd8b2f0ca5526bcaef953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lipnowski, Michael</creatorcontrib><creatorcontrib>Schaeffer, George J</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lipnowski, Michael</au><au>Schaeffer, George J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Large Simple Rational Hecke Modules for Γ0(N) via Congruences</atitle><jtitle>International mathematics research notices</jtitle><date>2020-10-09</date><risdate>2020</risdate><volume>2020</volume><issue>19</issue><spage>6149</spage><epage>6168</epage><pages>6149-6168</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>We describe a novel method for bounding the dimension $d$ of the largest simple Hecke submodule of $S_{2}(\Gamma _{0}(N);\mathbb{Q})$ from below. Such bounds are of interest because of their relevance to the structure of $J_{0}(N)$, for instance. In contrast with previous results of this kind, our bound does not rely on the equidistribution of Hecke eigenvalues. Instead, it is obtained via a Hecke-compatible congruence between the target space and a space of modular forms whose Hecke eigenvalues are easily controlled. We prove conditional bounds, the strongest of which is $d\gg _{\epsilon } N^{1/2-\epsilon }$ over a large set of primes $N$, contingent on Soundararajan’s heuristics for the class number problem and Artin’s conjecture on primitive roots. For prime levels $N\equiv 7\mod 8,$ our method yields an unconditional bound of $d\geq \log _{2}\log _{2}(\frac{N}{8})$, which is larger than the known bound of $d\gg \sqrt{\log \log N}$ due to Murty–Sinha and Royer. A stronger unconditional bound of $d\gg \log N$ can be obtained in more specialized (but infinitely many) cases. We also propose a number of Maeda-style conjectures based on our data, and we outline a possible congruence-based approach toward the conjectural Hecke simplicity of $S_{k}(\textrm{SL}_{2}(\mathbb{Z});\mathbb{Q})$.</abstract><doi>10.1093/imrn/rny190</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International mathematics research notices, 2020-10, Vol.2020 (19), p.6149-6168
issn 1073-7928
1687-0247
language eng
recordid cdi_crossref_primary_10_1093_imrn_rny190
source Oxford Journals Online
title Detecting Large Simple Rational Hecke Modules for Γ0(N) via Congruences
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Large%20Simple%20Rational%20Hecke%20Modules%20for%20%CE%930(N)%20via%20Congruences&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Lipnowski,%20Michael&rft.date=2020-10-09&rft.volume=2020&rft.issue=19&rft.spage=6149&rft.epage=6168&rft.pages=6149-6168&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rny190&rft_dat=%3Ccrossref%3E10_1093_imrn_rny190%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c106t-a355a870198cbc9d5919e8b5fef5e2ec9b1ba9b425f5fd8b2f0ca5526bcaef953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true