Loading…

Densities of Currents on Non-Kähler Manifolds

We give a natural generalization of the Dinh–Sibony notion of density currents in the setting where the ambient manifold is not necessarily Kähler. As an application, we show that the algebraic entropy of meromorphic self-maps of compact complex surfaces is a finite bi-meromorphic invariant.

Saved in:
Bibliographic Details
Published in:International mathematics research notices 2021-09, Vol.2021 (17), p.13282-13304
Main Author: Vu, Duc-Viet
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c163t-3cf9aa1809d7edcdd38b6b0ef31be14542dd6c40696ac7bff58e97c1a8d813a53
cites cdi_FETCH-LOGICAL-c163t-3cf9aa1809d7edcdd38b6b0ef31be14542dd6c40696ac7bff58e97c1a8d813a53
container_end_page 13304
container_issue 17
container_start_page 13282
container_title International mathematics research notices
container_volume 2021
creator Vu, Duc-Viet
description We give a natural generalization of the Dinh–Sibony notion of density currents in the setting where the ambient manifold is not necessarily Kähler. As an application, we show that the algebraic entropy of meromorphic self-maps of compact complex surfaces is a finite bi-meromorphic invariant.
doi_str_mv 10.1093/imrn/rnz270
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnz270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imrn_rnz270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c163t-3cf9aa1809d7edcdd38b6b0ef31be14542dd6c40696ac7bff58e97c1a8d813a53</originalsourceid><addsrcrecordid>eNotz0tOwzAUhWELgUQpjNhA5sjtvXHixxCFp9rCBMaW44cwSh1khwGsh52wMVqV0flHR_oIuURYICi2jNucljl91wKOyAy5FBTqRhzvGgSjQtXylJyV8g5QA0o2I4sbn0qcoi_VGKruM2efpl2n6mlMdPX78zb4XG1MimEcXDknJ8EMxV_875y83t2-dA90_Xz_2F2vqUXOJspsUMagBOWEd9Y5Jnvegw8Me49N29TOcdsAV9xY0YfQSq-ERSOdRGZaNidXh1-bx1KyD_ojx63JXxpB76l6T9UHKvsDBlpJiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Densities of Currents on Non-Kähler Manifolds</title><source>Oxford Journals Online</source><creator>Vu, Duc-Viet</creator><creatorcontrib>Vu, Duc-Viet</creatorcontrib><description>We give a natural generalization of the Dinh–Sibony notion of density currents in the setting where the ambient manifold is not necessarily Kähler. As an application, we show that the algebraic entropy of meromorphic self-maps of compact complex surfaces is a finite bi-meromorphic invariant.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnz270</identifier><language>eng</language><ispartof>International mathematics research notices, 2021-09, Vol.2021 (17), p.13282-13304</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c163t-3cf9aa1809d7edcdd38b6b0ef31be14542dd6c40696ac7bff58e97c1a8d813a53</citedby><cites>FETCH-LOGICAL-c163t-3cf9aa1809d7edcdd38b6b0ef31be14542dd6c40696ac7bff58e97c1a8d813a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Vu, Duc-Viet</creatorcontrib><title>Densities of Currents on Non-Kähler Manifolds</title><title>International mathematics research notices</title><description>We give a natural generalization of the Dinh–Sibony notion of density currents in the setting where the ambient manifold is not necessarily Kähler. As an application, we show that the algebraic entropy of meromorphic self-maps of compact complex surfaces is a finite bi-meromorphic invariant.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotz0tOwzAUhWELgUQpjNhA5sjtvXHixxCFp9rCBMaW44cwSh1khwGsh52wMVqV0flHR_oIuURYICi2jNucljl91wKOyAy5FBTqRhzvGgSjQtXylJyV8g5QA0o2I4sbn0qcoi_VGKruM2efpl2n6mlMdPX78zb4XG1MimEcXDknJ8EMxV_875y83t2-dA90_Xz_2F2vqUXOJspsUMagBOWEd9Y5Jnvegw8Me49N29TOcdsAV9xY0YfQSq-ERSOdRGZaNidXh1-bx1KyD_ojx63JXxpB76l6T9UHKvsDBlpJiw</recordid><startdate>20210926</startdate><enddate>20210926</enddate><creator>Vu, Duc-Viet</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210926</creationdate><title>Densities of Currents on Non-Kähler Manifolds</title><author>Vu, Duc-Viet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c163t-3cf9aa1809d7edcdd38b6b0ef31be14542dd6c40696ac7bff58e97c1a8d813a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vu, Duc-Viet</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vu, Duc-Viet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Densities of Currents on Non-Kähler Manifolds</atitle><jtitle>International mathematics research notices</jtitle><date>2021-09-26</date><risdate>2021</risdate><volume>2021</volume><issue>17</issue><spage>13282</spage><epage>13304</epage><pages>13282-13304</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>We give a natural generalization of the Dinh–Sibony notion of density currents in the setting where the ambient manifold is not necessarily Kähler. As an application, we show that the algebraic entropy of meromorphic self-maps of compact complex surfaces is a finite bi-meromorphic invariant.</abstract><doi>10.1093/imrn/rnz270</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International mathematics research notices, 2021-09, Vol.2021 (17), p.13282-13304
issn 1073-7928
1687-0247
language eng
recordid cdi_crossref_primary_10_1093_imrn_rnz270
source Oxford Journals Online
title Densities of Currents on Non-Kähler Manifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Densities%20of%20Currents%20on%20Non-K%C3%A4hler%20Manifolds&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Vu,%20Duc-Viet&rft.date=2021-09-26&rft.volume=2021&rft.issue=17&rft.spage=13282&rft.epage=13304&rft.pages=13282-13304&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnz270&rft_dat=%3Ccrossref%3E10_1093_imrn_rnz270%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c163t-3cf9aa1809d7edcdd38b6b0ef31be14542dd6c40696ac7bff58e97c1a8d813a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true