Loading…

A New Strategy for the Prevention of Clostridium difficile Infection

Background. Clostridium difficile infection (CDI) is a leading cause of antibiotic-associated diarrhea. The infective form of C. difficile is the spore, but the vegetative bacterium causes the disease. Because C. difficile spore germination is required for symptomatic infection, antigermination appr...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of infectious diseases 2013-05, Vol.207 (10), p.1498-1504
Main Authors: Howerton, Amber, Patra, Manomita, Abel-Santos, Ernesto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background. Clostridium difficile infection (CDI) is a leading cause of antibiotic-associated diarrhea. The infective form of C. difficile is the spore, but the vegetative bacterium causes the disease. Because C. difficile spore germination is required for symptomatic infection, antigermination approaches could lead to the prevention of CDI. We recently reported that CamSA, a bile salt analog, inhibits C. difficile spore germination in vitro. Methods. Mice infected with massive inocula of C. difficile spores were treated with different concentrations of CamSA and monitored for CDI signs. C. difficile spore and vegetative cells were counted in feces from infected mice. Results. A single 50-mg/kg dose of CamSA prevented CDI in mice without any observable toxicity. Lower CamSA doses resulted in delayed CDI onset and less severe signs of disease. Ingested C. difficile spores were quantitatively recovered from feces of CamSA-protected mice. Conclusions. Our results support a mechanism whereby the antigermination effect of CamSA is responsible for preventing CDI signs. This approach represents a new paradigm in CDI treatment. Instead of further compromising the microbiota of CDI patients with strong antibiotics, antigermination therapy could serve as a microbiota surrogate to curtail C. difficile colonization of antibiotic-treated patients.
ISSN:0022-1899
1537-6613
DOI:10.1093/infdis/jit068