Loading…

L-system models for image-based phenomics: case studies of maize and canola

Abstract Artificial neural networks that recognize and quantify relevant aspects of crop plants show great promise in image-based phenomics, but their training requires many annotated images. The acquisition of these images is comparatively simple, but their manual annotation is time-consuming. Real...

Full description

Saved in:
Bibliographic Details
Published in:in silico plants 2022-01, Vol.4 (1)
Main Authors: Cieslak, Mikolaj, Khan, Nazifa, Ferraro, Pascal, Soolanayakanahally, Raju, Robinson, Stephen J, Parkin, Isobel, McQuillan, Ian, Prusinkiewicz, Przemyslaw
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c345t-4d4b07d97c1b179108a21271974bc30fa317a53c1d1ad684a2efdb9a17d2f6f33
cites cdi_FETCH-LOGICAL-c345t-4d4b07d97c1b179108a21271974bc30fa317a53c1d1ad684a2efdb9a17d2f6f33
container_end_page
container_issue 1
container_start_page
container_title in silico plants
container_volume 4
creator Cieslak, Mikolaj
Khan, Nazifa
Ferraro, Pascal
Soolanayakanahally, Raju
Robinson, Stephen J
Parkin, Isobel
McQuillan, Ian
Prusinkiewicz, Przemyslaw
description Abstract Artificial neural networks that recognize and quantify relevant aspects of crop plants show great promise in image-based phenomics, but their training requires many annotated images. The acquisition of these images is comparatively simple, but their manual annotation is time-consuming. Realistic plant models, which can be annotated automatically, thus present an attractive alternative to real plant images for training purposes. Here we show how such models can be constructed and calibrated quickly, using maize and canola as case studies.
doi_str_mv 10.1093/insilicoplants/diab039
format article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_insilicoplants_diab039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/insilicoplants/diab039</oup_id><sourcerecordid>10.1093/insilicoplants/diab039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-4d4b07d97c1b179108a21271974bc30fa317a53c1d1ad684a2efdb9a17d2f6f33</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EElXpLyD_QKjHTuKaHap4VERiA-to4gcYJXGUSRfl6wlqF7BjNVdzdUajw9g1iBsQRq1jT7GNNg0t9hOtXcRGKHPGFrIAnRVCFue_8iVbEX0KMce8UMYs2HOV0YEm3_EuOd8SD2nkscN3nzVI3vHhw_epi5ZuuZ0XnKa9i554CrzD-OU59m5u-tTiFbsI2JJfneaSvT3cv26fsurlcbe9qzKr8mLKcpc3QjujLTSgDYgNSpAajM4bq0RABRoLZcEBunKTo_TBNQZBOxnKoNSSlce7dkxEow_1MM4vj4caRP1jpf5rpT5ZmUE4gmk__Jf5BmplbYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>L-system models for image-based phenomics: case studies of maize and canola</title><source>Oxford Academic Journals (Open Access)</source><creator>Cieslak, Mikolaj ; Khan, Nazifa ; Ferraro, Pascal ; Soolanayakanahally, Raju ; Robinson, Stephen J ; Parkin, Isobel ; McQuillan, Ian ; Prusinkiewicz, Przemyslaw</creator><contributor>Long, Steve</contributor><creatorcontrib>Cieslak, Mikolaj ; Khan, Nazifa ; Ferraro, Pascal ; Soolanayakanahally, Raju ; Robinson, Stephen J ; Parkin, Isobel ; McQuillan, Ian ; Prusinkiewicz, Przemyslaw ; Long, Steve</creatorcontrib><description>Abstract Artificial neural networks that recognize and quantify relevant aspects of crop plants show great promise in image-based phenomics, but their training requires many annotated images. The acquisition of these images is comparatively simple, but their manual annotation is time-consuming. Realistic plant models, which can be annotated automatically, thus present an attractive alternative to real plant images for training purposes. Here we show how such models can be constructed and calibrated quickly, using maize and canola as case studies.</description><identifier>ISSN: 2517-5025</identifier><identifier>EISSN: 2517-5025</identifier><identifier>DOI: 10.1093/insilicoplants/diab039</identifier><language>eng</language><publisher>UK: Oxford University Press</publisher><ispartof>in silico plants, 2022-01, Vol.4 (1)</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-4d4b07d97c1b179108a21271974bc30fa317a53c1d1ad684a2efdb9a17d2f6f33</citedby><cites>FETCH-LOGICAL-c345t-4d4b07d97c1b179108a21271974bc30fa317a53c1d1ad684a2efdb9a17d2f6f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Long, Steve</contributor><creatorcontrib>Cieslak, Mikolaj</creatorcontrib><creatorcontrib>Khan, Nazifa</creatorcontrib><creatorcontrib>Ferraro, Pascal</creatorcontrib><creatorcontrib>Soolanayakanahally, Raju</creatorcontrib><creatorcontrib>Robinson, Stephen J</creatorcontrib><creatorcontrib>Parkin, Isobel</creatorcontrib><creatorcontrib>McQuillan, Ian</creatorcontrib><creatorcontrib>Prusinkiewicz, Przemyslaw</creatorcontrib><title>L-system models for image-based phenomics: case studies of maize and canola</title><title>in silico plants</title><description>Abstract Artificial neural networks that recognize and quantify relevant aspects of crop plants show great promise in image-based phenomics, but their training requires many annotated images. The acquisition of these images is comparatively simple, but their manual annotation is time-consuming. Realistic plant models, which can be annotated automatically, thus present an attractive alternative to real plant images for training purposes. Here we show how such models can be constructed and calibrated quickly, using maize and canola as case studies.</description><issn>2517-5025</issn><issn>2517-5025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkMtOwzAQRS0EElXpLyD_QKjHTuKaHap4VERiA-to4gcYJXGUSRfl6wlqF7BjNVdzdUajw9g1iBsQRq1jT7GNNg0t9hOtXcRGKHPGFrIAnRVCFue_8iVbEX0KMce8UMYs2HOV0YEm3_EuOd8SD2nkscN3nzVI3vHhw_epi5ZuuZ0XnKa9i554CrzD-OU59m5u-tTiFbsI2JJfneaSvT3cv26fsurlcbe9qzKr8mLKcpc3QjujLTSgDYgNSpAajM4bq0RABRoLZcEBunKTo_TBNQZBOxnKoNSSlce7dkxEow_1MM4vj4caRP1jpf5rpT5ZmUE4gmk__Jf5BmplbYg</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Cieslak, Mikolaj</creator><creator>Khan, Nazifa</creator><creator>Ferraro, Pascal</creator><creator>Soolanayakanahally, Raju</creator><creator>Robinson, Stephen J</creator><creator>Parkin, Isobel</creator><creator>McQuillan, Ian</creator><creator>Prusinkiewicz, Przemyslaw</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220101</creationdate><title>L-system models for image-based phenomics: case studies of maize and canola</title><author>Cieslak, Mikolaj ; Khan, Nazifa ; Ferraro, Pascal ; Soolanayakanahally, Raju ; Robinson, Stephen J ; Parkin, Isobel ; McQuillan, Ian ; Prusinkiewicz, Przemyslaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-4d4b07d97c1b179108a21271974bc30fa317a53c1d1ad684a2efdb9a17d2f6f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cieslak, Mikolaj</creatorcontrib><creatorcontrib>Khan, Nazifa</creatorcontrib><creatorcontrib>Ferraro, Pascal</creatorcontrib><creatorcontrib>Soolanayakanahally, Raju</creatorcontrib><creatorcontrib>Robinson, Stephen J</creatorcontrib><creatorcontrib>Parkin, Isobel</creatorcontrib><creatorcontrib>McQuillan, Ian</creatorcontrib><creatorcontrib>Prusinkiewicz, Przemyslaw</creatorcontrib><collection>Oxford Academic Journals (Open Access)</collection><collection>CrossRef</collection><jtitle>in silico plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cieslak, Mikolaj</au><au>Khan, Nazifa</au><au>Ferraro, Pascal</au><au>Soolanayakanahally, Raju</au><au>Robinson, Stephen J</au><au>Parkin, Isobel</au><au>McQuillan, Ian</au><au>Prusinkiewicz, Przemyslaw</au><au>Long, Steve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>L-system models for image-based phenomics: case studies of maize and canola</atitle><jtitle>in silico plants</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>4</volume><issue>1</issue><issn>2517-5025</issn><eissn>2517-5025</eissn><abstract>Abstract Artificial neural networks that recognize and quantify relevant aspects of crop plants show great promise in image-based phenomics, but their training requires many annotated images. The acquisition of these images is comparatively simple, but their manual annotation is time-consuming. Realistic plant models, which can be annotated automatically, thus present an attractive alternative to real plant images for training purposes. Here we show how such models can be constructed and calibrated quickly, using maize and canola as case studies.</abstract><cop>UK</cop><pub>Oxford University Press</pub><doi>10.1093/insilicoplants/diab039</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2517-5025
ispartof in silico plants, 2022-01, Vol.4 (1)
issn 2517-5025
2517-5025
language eng
recordid cdi_crossref_primary_10_1093_insilicoplants_diab039
source Oxford Academic Journals (Open Access)
title L-system models for image-based phenomics: case studies of maize and canola
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=L-system%20models%20for%20image-based%20phenomics:%20case%20studies%20of%20maize%20and%20canola&rft.jtitle=in%20silico%20plants&rft.au=Cieslak,%20Mikolaj&rft.date=2022-01-01&rft.volume=4&rft.issue=1&rft.issn=2517-5025&rft.eissn=2517-5025&rft_id=info:doi/10.1093/insilicoplants/diab039&rft_dat=%3Coup_cross%3E10.1093/insilicoplants/diab039%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-4d4b07d97c1b179108a21271974bc30fa317a53c1d1ad684a2efdb9a17d2f6f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/insilicoplants/diab039&rfr_iscdi=true