Loading…
L-system models for image-based phenomics: case studies of maize and canola
Abstract Artificial neural networks that recognize and quantify relevant aspects of crop plants show great promise in image-based phenomics, but their training requires many annotated images. The acquisition of these images is comparatively simple, but their manual annotation is time-consuming. Real...
Saved in:
Published in: | in silico plants 2022-01, Vol.4 (1) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c345t-4d4b07d97c1b179108a21271974bc30fa317a53c1d1ad684a2efdb9a17d2f6f33 |
---|---|
cites | cdi_FETCH-LOGICAL-c345t-4d4b07d97c1b179108a21271974bc30fa317a53c1d1ad684a2efdb9a17d2f6f33 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | in silico plants |
container_volume | 4 |
creator | Cieslak, Mikolaj Khan, Nazifa Ferraro, Pascal Soolanayakanahally, Raju Robinson, Stephen J Parkin, Isobel McQuillan, Ian Prusinkiewicz, Przemyslaw |
description | Abstract
Artificial neural networks that recognize and quantify relevant aspects of crop plants show great promise in image-based phenomics, but their training requires many annotated images. The acquisition of these images is comparatively simple, but their manual annotation is time-consuming. Realistic plant models, which can be annotated automatically, thus present an attractive alternative to real plant images for training purposes. Here we show how such models can be constructed and calibrated quickly, using maize and canola as case studies. |
doi_str_mv | 10.1093/insilicoplants/diab039 |
format | article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_insilicoplants_diab039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/insilicoplants/diab039</oup_id><sourcerecordid>10.1093/insilicoplants/diab039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-4d4b07d97c1b179108a21271974bc30fa317a53c1d1ad684a2efdb9a17d2f6f33</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EElXpLyD_QKjHTuKaHap4VERiA-to4gcYJXGUSRfl6wlqF7BjNVdzdUajw9g1iBsQRq1jT7GNNg0t9hOtXcRGKHPGFrIAnRVCFue_8iVbEX0KMce8UMYs2HOV0YEm3_EuOd8SD2nkscN3nzVI3vHhw_epi5ZuuZ0XnKa9i554CrzD-OU59m5u-tTiFbsI2JJfneaSvT3cv26fsurlcbe9qzKr8mLKcpc3QjujLTSgDYgNSpAajM4bq0RABRoLZcEBunKTo_TBNQZBOxnKoNSSlce7dkxEow_1MM4vj4caRP1jpf5rpT5ZmUE4gmk__Jf5BmplbYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>L-system models for image-based phenomics: case studies of maize and canola</title><source>Oxford Academic Journals (Open Access)</source><creator>Cieslak, Mikolaj ; Khan, Nazifa ; Ferraro, Pascal ; Soolanayakanahally, Raju ; Robinson, Stephen J ; Parkin, Isobel ; McQuillan, Ian ; Prusinkiewicz, Przemyslaw</creator><contributor>Long, Steve</contributor><creatorcontrib>Cieslak, Mikolaj ; Khan, Nazifa ; Ferraro, Pascal ; Soolanayakanahally, Raju ; Robinson, Stephen J ; Parkin, Isobel ; McQuillan, Ian ; Prusinkiewicz, Przemyslaw ; Long, Steve</creatorcontrib><description>Abstract
Artificial neural networks that recognize and quantify relevant aspects of crop plants show great promise in image-based phenomics, but their training requires many annotated images. The acquisition of these images is comparatively simple, but their manual annotation is time-consuming. Realistic plant models, which can be annotated automatically, thus present an attractive alternative to real plant images for training purposes. Here we show how such models can be constructed and calibrated quickly, using maize and canola as case studies.</description><identifier>ISSN: 2517-5025</identifier><identifier>EISSN: 2517-5025</identifier><identifier>DOI: 10.1093/insilicoplants/diab039</identifier><language>eng</language><publisher>UK: Oxford University Press</publisher><ispartof>in silico plants, 2022-01, Vol.4 (1)</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-4d4b07d97c1b179108a21271974bc30fa317a53c1d1ad684a2efdb9a17d2f6f33</citedby><cites>FETCH-LOGICAL-c345t-4d4b07d97c1b179108a21271974bc30fa317a53c1d1ad684a2efdb9a17d2f6f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Long, Steve</contributor><creatorcontrib>Cieslak, Mikolaj</creatorcontrib><creatorcontrib>Khan, Nazifa</creatorcontrib><creatorcontrib>Ferraro, Pascal</creatorcontrib><creatorcontrib>Soolanayakanahally, Raju</creatorcontrib><creatorcontrib>Robinson, Stephen J</creatorcontrib><creatorcontrib>Parkin, Isobel</creatorcontrib><creatorcontrib>McQuillan, Ian</creatorcontrib><creatorcontrib>Prusinkiewicz, Przemyslaw</creatorcontrib><title>L-system models for image-based phenomics: case studies of maize and canola</title><title>in silico plants</title><description>Abstract
Artificial neural networks that recognize and quantify relevant aspects of crop plants show great promise in image-based phenomics, but their training requires many annotated images. The acquisition of these images is comparatively simple, but their manual annotation is time-consuming. Realistic plant models, which can be annotated automatically, thus present an attractive alternative to real plant images for training purposes. Here we show how such models can be constructed and calibrated quickly, using maize and canola as case studies.</description><issn>2517-5025</issn><issn>2517-5025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkMtOwzAQRS0EElXpLyD_QKjHTuKaHap4VERiA-to4gcYJXGUSRfl6wlqF7BjNVdzdUajw9g1iBsQRq1jT7GNNg0t9hOtXcRGKHPGFrIAnRVCFue_8iVbEX0KMce8UMYs2HOV0YEm3_EuOd8SD2nkscN3nzVI3vHhw_epi5ZuuZ0XnKa9i554CrzD-OU59m5u-tTiFbsI2JJfneaSvT3cv26fsurlcbe9qzKr8mLKcpc3QjujLTSgDYgNSpAajM4bq0RABRoLZcEBunKTo_TBNQZBOxnKoNSSlce7dkxEow_1MM4vj4caRP1jpf5rpT5ZmUE4gmk__Jf5BmplbYg</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Cieslak, Mikolaj</creator><creator>Khan, Nazifa</creator><creator>Ferraro, Pascal</creator><creator>Soolanayakanahally, Raju</creator><creator>Robinson, Stephen J</creator><creator>Parkin, Isobel</creator><creator>McQuillan, Ian</creator><creator>Prusinkiewicz, Przemyslaw</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220101</creationdate><title>L-system models for image-based phenomics: case studies of maize and canola</title><author>Cieslak, Mikolaj ; Khan, Nazifa ; Ferraro, Pascal ; Soolanayakanahally, Raju ; Robinson, Stephen J ; Parkin, Isobel ; McQuillan, Ian ; Prusinkiewicz, Przemyslaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-4d4b07d97c1b179108a21271974bc30fa317a53c1d1ad684a2efdb9a17d2f6f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cieslak, Mikolaj</creatorcontrib><creatorcontrib>Khan, Nazifa</creatorcontrib><creatorcontrib>Ferraro, Pascal</creatorcontrib><creatorcontrib>Soolanayakanahally, Raju</creatorcontrib><creatorcontrib>Robinson, Stephen J</creatorcontrib><creatorcontrib>Parkin, Isobel</creatorcontrib><creatorcontrib>McQuillan, Ian</creatorcontrib><creatorcontrib>Prusinkiewicz, Przemyslaw</creatorcontrib><collection>Oxford Academic Journals (Open Access)</collection><collection>CrossRef</collection><jtitle>in silico plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cieslak, Mikolaj</au><au>Khan, Nazifa</au><au>Ferraro, Pascal</au><au>Soolanayakanahally, Raju</au><au>Robinson, Stephen J</au><au>Parkin, Isobel</au><au>McQuillan, Ian</au><au>Prusinkiewicz, Przemyslaw</au><au>Long, Steve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>L-system models for image-based phenomics: case studies of maize and canola</atitle><jtitle>in silico plants</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>4</volume><issue>1</issue><issn>2517-5025</issn><eissn>2517-5025</eissn><abstract>Abstract
Artificial neural networks that recognize and quantify relevant aspects of crop plants show great promise in image-based phenomics, but their training requires many annotated images. The acquisition of these images is comparatively simple, but their manual annotation is time-consuming. Realistic plant models, which can be annotated automatically, thus present an attractive alternative to real plant images for training purposes. Here we show how such models can be constructed and calibrated quickly, using maize and canola as case studies.</abstract><cop>UK</cop><pub>Oxford University Press</pub><doi>10.1093/insilicoplants/diab039</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2517-5025 |
ispartof | in silico plants, 2022-01, Vol.4 (1) |
issn | 2517-5025 2517-5025 |
language | eng |
recordid | cdi_crossref_primary_10_1093_insilicoplants_diab039 |
source | Oxford Academic Journals (Open Access) |
title | L-system models for image-based phenomics: case studies of maize and canola |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=L-system%20models%20for%20image-based%20phenomics:%20case%20studies%20of%20maize%20and%20canola&rft.jtitle=in%20silico%20plants&rft.au=Cieslak,%20Mikolaj&rft.date=2022-01-01&rft.volume=4&rft.issue=1&rft.issn=2517-5025&rft.eissn=2517-5025&rft_id=info:doi/10.1093/insilicoplants/diab039&rft_dat=%3Coup_cross%3E10.1093/insilicoplants/diab039%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-4d4b07d97c1b179108a21271974bc30fa317a53c1d1ad684a2efdb9a17d2f6f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/insilicoplants/diab039&rfr_iscdi=true |