Loading…

Validated Method for the Screening and Quantification of Baclofen, Gabapentin and Pregabalin in Human Post-Mortem Whole Blood Using Protein Precipitation and Liquid Chromatography-Tandem Mass Spectrometry

There has been a rapid increase in the number of prescriptions for baclofen (BLF), gabapentin (GBP) and pregabalin (PGL) in the UK since their introduction to therapy. Recent studies across the European Union and USA have shown the illicit abuse potential of these drugs and deaths have been observed...

Full description

Saved in:
Bibliographic Details
Published in:Journal of analytical toxicology 2017-06, Vol.41 (5), p.441-450
Main Authors: Nahar, Limon, Smith, Amy, Patel, Rajan, Andrews, Rebecca, Paterson, Sue
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There has been a rapid increase in the number of prescriptions for baclofen (BLF), gabapentin (GBP) and pregabalin (PGL) in the UK since their introduction to therapy. Recent studies across the European Union and USA have shown the illicit abuse potential of these drugs and deaths have been observed. A simple, reliable and fully validated method was developed for the screening and quantification of BLF, GBP and PGL in human post-mortem (PM) blood. The analytes and their deuterated analogs as internal standard were extracted from blood using a single addition acetonitrile protein precipitation reaction followed by analysis using liquid chromatography-tandem mass spectrometry (LC-MS-MS) with triggered dynamic multiple reaction monitoring mode for simultaneous confirmation and quantification. The assay was linear from 0.05 to 1.00 µg/mL for BLF and 0.5 to 50.0 µg/mL for GBP and PGL, respectively with r2 > 0.999 (n = 9) for all analytes. Intra-day and inter-day imprecisions (n = 80) were calculated using one-way ANOVA; no significant difference (P > 0.99) was observed for all analytes over 8 non-consecutive days. The average recovery for all analytes was >98.9%. The limits of detection and quantification were both 0.05 µg/mL for BLF, and 0.5 µg/mL for GBP and PGL. The method was highly selective with no interference from endogenous compounds or from 54 drugs commonly encountered in PM toxicology. To prove method applicability, 17 PM blood samples submitted for analysis were successfully analyzed. The concentration range observed in PM blood for BLF was 0.08-102.00 µg/mL (median = 0.25 µg/mL), for GBP 1.0-134.0 µg/mL (median = 49.0 µg/mL) and 2.0-540.0 µg/mL (median = 42.0 µg/mL) for PGL.
ISSN:0146-4760
1945-2403
DOI:10.1093/jat/bkx019