Loading…

Chemical and Apoptotic Properties of Hydroxy-Ceramides Containing Long-Chain Bases with Unusual Alkyl Chain Lengths

We analysed four types of free ceramides (Cer 1, Cer 2, Cer 3 and Cer 4) from equine kidneys by electrospray ionization mass spectrometry. Cer 1 was composed of dihydroxy long-chain bases (dLCBs) of (4E)-sphingenine (d18:1), sphinganine and non-hydroxy fatty acids (NFAs); Cer 2 was composed of trihy...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biochemistry (Tokyo) 2008-07, Vol.144 (1), p.95-106
Main Authors: Kyogashima, Mamoru, Tadano-Aritomi, Keiko, Aoyama, Toshifumi, Yusa, Akiko, Goto, Yoshiko, Tamiya-Koizumi, Keiko, Ito, Hiromi, Murate, Takashi, Kannagi, Reiji, Hara, Atsushi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We analysed four types of free ceramides (Cer 1, Cer 2, Cer 3 and Cer 4) from equine kidneys by electrospray ionization mass spectrometry. Cer 1 was composed of dihydroxy long-chain bases (dLCBs) of (4E)-sphingenine (d18:1), sphinganine and non-hydroxy fatty acids (NFAs); Cer 2 was composed of trihydroxy LCBs (tLCBs) of 4-hydroxysphinganine, t16:0, t18:0, t19:0 and t20:0, and NFAs; Cer 3 was composed of dLCBs, d16:1, d17:1, d18:1, d19:1 and d20:1, and hydroxy FAs (HFAs); and Cer 4 was composed of tLCBs, t16:0, t17:0, t18:0, t19:0 and t20:0, and HFAs. The results indicate all ceramide species containing LCBs with non-octadeca lengths (NOD-LCBs) can be classified into hydroxy-ceramides since these species always consist of tLCBs, and/or HFAs. Furthermore, such species tend to contain FAs with longer acyl chains but contain neither palmitate (C16:0) nor its hydroxylated form (C16:0h). The apoptosis-inducing activities of these hydroxyl-ceramides towards tumour cell lines were compared with that of non-hydroxy-ceramides, dLCB-NFA (Cer 1). Monohydroxy-ceramides, tLCB-NFA (Cer 2) and dLCB-HFA (Cer 3), exhibited stronger activities, whereas dihydroxy-ceramides, tLCB-HFA (Cer 4), exhibited similar or weaker activity than dLCB-NFA (Cer 1), depending on cell lines.
ISSN:0021-924X
1756-2651
DOI:10.1093/jb/mvn050