Loading…

Clustering techniques performance comparison for predicting the battery state of charge: A hybrid model approach

Batteries are a fundamental storage component due to its various applications in mobility, renewable energies and consumer electronics among others. Regardless of the battery typology, one key variable from a user’s perspective is the remaining energy in the battery. It is usually presented as the p...

Full description

Saved in:
Bibliographic Details
Published in:Logic journal of the IGPL 2024-07, Vol.32 (4), p.712-728
Main Authors: Ordás, María Teresa, del Blanco, David Yeregui Marcos, Aveleira-Mata, José, Zayas-Gato, Francisco, Jove, Esteban, Casteleiro-Roca, José-Luis, Quintián, Héctor, Luis Calvo-Rolle, José, Alaiz-Moreton, Héctor
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c124t-9110f227eefee5bb0b5179f80165e8b15465a9adc87e1d67836704ac57316c183
container_end_page 728
container_issue 4
container_start_page 712
container_title Logic journal of the IGPL
container_volume 32
creator Ordás, María Teresa
del Blanco, David Yeregui Marcos
Aveleira-Mata, José
Zayas-Gato, Francisco
Jove, Esteban
Casteleiro-Roca, José-Luis
Quintián, Héctor
Luis Calvo-Rolle, José
Alaiz-Moreton, Héctor
description Batteries are a fundamental storage component due to its various applications in mobility, renewable energies and consumer electronics among others. Regardless of the battery typology, one key variable from a user’s perspective is the remaining energy in the battery. It is usually presented as the percentage of remaining energy compared to the total energy that can be stored and is labeled State Of Charge (SOC). This work addresses the development of a hybrid model based on a Lithium Iron Phosphate (LiFePO4) power cell, due to its broad implementation. The proposed model calculates the SOC, by means of voltage and electric current as inputs and the latter as the output. Therefore, four models based on k-Means, Agglomerative Clustering, Gaussian Mixture and Spectral Clustering techniques have been tested in order to obtain an optimal solution.
doi_str_mv 10.1093/jigpal/jzae021
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_jigpal_jzae021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_jigpal_jzae021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124t-9110f227eefee5bb0b5179f80165e8b15465a9adc87e1d67836704ac57316c183</originalsourceid><addsrcrecordid>eNotkDFPwzAUhC0EEqWwMvsPpPVL4thhqyqgSJVYYI4c57lxlcTGdofy6yltpzuddCfdR8gzsAWwulju7c6rYbn_VchyuCEzKCqZ1bIub89eZExwuCcPMe4ZY6XM-Yz49XCICYOddjSh7if7c8BIPQbjwqgmjVS70atgo5voKaM-YGd1Ohd6pK1Kp_qRxqQSUmeo7lXY4Qtd0f7YBtvR0XU4UOV9cEr3j-TOqCHi01Xn5Pvt9Wu9ybaf7x_r1TbTkJcpqwGYyXOBaBB527KWg6iNZFBxlC3wsuKqVp2WAqGrhDz9Y6XSXBRQaZDFnCwuuzq4GAOaxgc7qnBsgDX_vJoLr-bKq_gD4fNjIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Clustering techniques performance comparison for predicting the battery state of charge: A hybrid model approach</title><source>Oxford Journals Online</source><creator>Ordás, María Teresa ; del Blanco, David Yeregui Marcos ; Aveleira-Mata, José ; Zayas-Gato, Francisco ; Jove, Esteban ; Casteleiro-Roca, José-Luis ; Quintián, Héctor ; Luis Calvo-Rolle, José ; Alaiz-Moreton, Héctor</creator><creatorcontrib>Ordás, María Teresa ; del Blanco, David Yeregui Marcos ; Aveleira-Mata, José ; Zayas-Gato, Francisco ; Jove, Esteban ; Casteleiro-Roca, José-Luis ; Quintián, Héctor ; Luis Calvo-Rolle, José ; Alaiz-Moreton, Héctor</creatorcontrib><description>Batteries are a fundamental storage component due to its various applications in mobility, renewable energies and consumer electronics among others. Regardless of the battery typology, one key variable from a user’s perspective is the remaining energy in the battery. It is usually presented as the percentage of remaining energy compared to the total energy that can be stored and is labeled State Of Charge (SOC). This work addresses the development of a hybrid model based on a Lithium Iron Phosphate (LiFePO4) power cell, due to its broad implementation. The proposed model calculates the SOC, by means of voltage and electric current as inputs and the latter as the output. Therefore, four models based on k-Means, Agglomerative Clustering, Gaussian Mixture and Spectral Clustering techniques have been tested in order to obtain an optimal solution.</description><identifier>ISSN: 1367-0751</identifier><identifier>EISSN: 1368-9894</identifier><identifier>DOI: 10.1093/jigpal/jzae021</identifier><language>eng</language><ispartof>Logic journal of the IGPL, 2024-07, Vol.32 (4), p.712-728</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c124t-9110f227eefee5bb0b5179f80165e8b15465a9adc87e1d67836704ac57316c183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ordás, María Teresa</creatorcontrib><creatorcontrib>del Blanco, David Yeregui Marcos</creatorcontrib><creatorcontrib>Aveleira-Mata, José</creatorcontrib><creatorcontrib>Zayas-Gato, Francisco</creatorcontrib><creatorcontrib>Jove, Esteban</creatorcontrib><creatorcontrib>Casteleiro-Roca, José-Luis</creatorcontrib><creatorcontrib>Quintián, Héctor</creatorcontrib><creatorcontrib>Luis Calvo-Rolle, José</creatorcontrib><creatorcontrib>Alaiz-Moreton, Héctor</creatorcontrib><title>Clustering techniques performance comparison for predicting the battery state of charge: A hybrid model approach</title><title>Logic journal of the IGPL</title><description>Batteries are a fundamental storage component due to its various applications in mobility, renewable energies and consumer electronics among others. Regardless of the battery typology, one key variable from a user’s perspective is the remaining energy in the battery. It is usually presented as the percentage of remaining energy compared to the total energy that can be stored and is labeled State Of Charge (SOC). This work addresses the development of a hybrid model based on a Lithium Iron Phosphate (LiFePO4) power cell, due to its broad implementation. The proposed model calculates the SOC, by means of voltage and electric current as inputs and the latter as the output. Therefore, four models based on k-Means, Agglomerative Clustering, Gaussian Mixture and Spectral Clustering techniques have been tested in order to obtain an optimal solution.</description><issn>1367-0751</issn><issn>1368-9894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkDFPwzAUhC0EEqWwMvsPpPVL4thhqyqgSJVYYI4c57lxlcTGdofy6yltpzuddCfdR8gzsAWwulju7c6rYbn_VchyuCEzKCqZ1bIub89eZExwuCcPMe4ZY6XM-Yz49XCICYOddjSh7if7c8BIPQbjwqgmjVS70atgo5voKaM-YGd1Ohd6pK1Kp_qRxqQSUmeo7lXY4Qtd0f7YBtvR0XU4UOV9cEr3j-TOqCHi01Xn5Pvt9Wu9ybaf7x_r1TbTkJcpqwGYyXOBaBB527KWg6iNZFBxlC3wsuKqVp2WAqGrhDz9Y6XSXBRQaZDFnCwuuzq4GAOaxgc7qnBsgDX_vJoLr-bKq_gD4fNjIQ</recordid><startdate>20240725</startdate><enddate>20240725</enddate><creator>Ordás, María Teresa</creator><creator>del Blanco, David Yeregui Marcos</creator><creator>Aveleira-Mata, José</creator><creator>Zayas-Gato, Francisco</creator><creator>Jove, Esteban</creator><creator>Casteleiro-Roca, José-Luis</creator><creator>Quintián, Héctor</creator><creator>Luis Calvo-Rolle, José</creator><creator>Alaiz-Moreton, Héctor</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240725</creationdate><title>Clustering techniques performance comparison for predicting the battery state of charge: A hybrid model approach</title><author>Ordás, María Teresa ; del Blanco, David Yeregui Marcos ; Aveleira-Mata, José ; Zayas-Gato, Francisco ; Jove, Esteban ; Casteleiro-Roca, José-Luis ; Quintián, Héctor ; Luis Calvo-Rolle, José ; Alaiz-Moreton, Héctor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124t-9110f227eefee5bb0b5179f80165e8b15465a9adc87e1d67836704ac57316c183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ordás, María Teresa</creatorcontrib><creatorcontrib>del Blanco, David Yeregui Marcos</creatorcontrib><creatorcontrib>Aveleira-Mata, José</creatorcontrib><creatorcontrib>Zayas-Gato, Francisco</creatorcontrib><creatorcontrib>Jove, Esteban</creatorcontrib><creatorcontrib>Casteleiro-Roca, José-Luis</creatorcontrib><creatorcontrib>Quintián, Héctor</creatorcontrib><creatorcontrib>Luis Calvo-Rolle, José</creatorcontrib><creatorcontrib>Alaiz-Moreton, Héctor</creatorcontrib><collection>CrossRef</collection><jtitle>Logic journal of the IGPL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ordás, María Teresa</au><au>del Blanco, David Yeregui Marcos</au><au>Aveleira-Mata, José</au><au>Zayas-Gato, Francisco</au><au>Jove, Esteban</au><au>Casteleiro-Roca, José-Luis</au><au>Quintián, Héctor</au><au>Luis Calvo-Rolle, José</au><au>Alaiz-Moreton, Héctor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering techniques performance comparison for predicting the battery state of charge: A hybrid model approach</atitle><jtitle>Logic journal of the IGPL</jtitle><date>2024-07-25</date><risdate>2024</risdate><volume>32</volume><issue>4</issue><spage>712</spage><epage>728</epage><pages>712-728</pages><issn>1367-0751</issn><eissn>1368-9894</eissn><abstract>Batteries are a fundamental storage component due to its various applications in mobility, renewable energies and consumer electronics among others. Regardless of the battery typology, one key variable from a user’s perspective is the remaining energy in the battery. It is usually presented as the percentage of remaining energy compared to the total energy that can be stored and is labeled State Of Charge (SOC). This work addresses the development of a hybrid model based on a Lithium Iron Phosphate (LiFePO4) power cell, due to its broad implementation. The proposed model calculates the SOC, by means of voltage and electric current as inputs and the latter as the output. Therefore, four models based on k-Means, Agglomerative Clustering, Gaussian Mixture and Spectral Clustering techniques have been tested in order to obtain an optimal solution.</abstract><doi>10.1093/jigpal/jzae021</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1367-0751
ispartof Logic journal of the IGPL, 2024-07, Vol.32 (4), p.712-728
issn 1367-0751
1368-9894
language eng
recordid cdi_crossref_primary_10_1093_jigpal_jzae021
source Oxford Journals Online
title Clustering techniques performance comparison for predicting the battery state of charge: A hybrid model approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20techniques%20performance%20comparison%20for%20predicting%20the%20battery%20state%20of%20charge:%20A%20hybrid%20model%20approach&rft.jtitle=Logic%20journal%20of%20the%20IGPL&rft.au=Ord%C3%A1s,%20Mar%C3%ADa%20Teresa&rft.date=2024-07-25&rft.volume=32&rft.issue=4&rft.spage=712&rft.epage=728&rft.pages=712-728&rft.issn=1367-0751&rft.eissn=1368-9894&rft_id=info:doi/10.1093/jigpal/jzae021&rft_dat=%3Ccrossref%3E10_1093_jigpal_jzae021%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c124t-9110f227eefee5bb0b5179f80165e8b15465a9adc87e1d67836704ac57316c183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true