Loading…
Collective intelligence approaches in interactive evolutionary multi-objective optimization
Evolutionary multi-objective optimization algorithms (EMOAs) have been successfully applied in many real-life problems. EMOAs approximate the set of trade-offs between multiple conflicting objectives, known as the Pareto optimal set. Reference point approaches can alleviate the optimization process...
Saved in:
Published in: | Logic journal of the IGPL 2020-02, Vol.28 (1), p.95-108 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c237t-f7bb82b13761c4bd85276e2414a45c286bcfab86371cbf565914986c42335e3d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c237t-f7bb82b13761c4bd85276e2414a45c286bcfab86371cbf565914986c42335e3d3 |
container_end_page | 108 |
container_issue | 1 |
container_start_page | 95 |
container_title | Logic journal of the IGPL |
container_volume | 28 |
creator | Cinalli, Daniel Martí, Luis Sanchez-Pi, Nayat Cristina Bicharra Garcia, Ana |
description | Evolutionary multi-objective optimization algorithms (EMOAs) have been successfully applied in many real-life problems. EMOAs approximate the set of trade-offs between multiple conflicting objectives, known as the Pareto optimal set. Reference point approaches can alleviate the optimization process by highlighting relevant areas of the Pareto set and support the decision makers to take the more confident evaluation. One important drawback of this approaches is that they require an in-depth knowledge of the problem being solved in order to function correctly. Collective intelligence has been put forward as an alternative to deal with situations like these. This paper extends some well-known EMOAs to incorporate collective preferences and interactive techniques. Similarly, two new preference-based multi-objective optimization performance indicators are introduced in order to analyze the results produced by the proposed algorithms in the comparative experiments carried out. |
doi_str_mv | 10.1093/jigpal/jzz074 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_jigpal_jzz074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_jigpal_jzz074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-f7bb82b13761c4bd85276e2414a45c286bcfab86371cbf565914986c42335e3d3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKtH7_sHYvOd7FGKX1DwoicPS5Jma5bsZknSgvvrbbs9vcM7wzA8ADxi9IRRTVed3406rLppQpJdgQWmQsFa1ez6rCVEkuNbcJdzhxBiivAF-FnHEJwt_uAqPxQXgt-5wbpKj2OK2v66fPyfraTnmDvEsC8-Djr9Vf0-FA-j6S4dcSy-95M--ffgptUhu4fLXYLv15ev9TvcfL59rJ830BIqC2ylMYoYTKXAlpmt4kQKRxhmmnFLlDC21UYJKrE1LRe8xqxWwjJCKXd0S5cAzr02xZyTa5sx-f64rsGoOZFpZjLNTIb-AwXFXBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Collective intelligence approaches in interactive evolutionary multi-objective optimization</title><source>Oxford Journals Online</source><source>EBSCOHost: Business Source Ultimate</source><creator>Cinalli, Daniel ; Martí, Luis ; Sanchez-Pi, Nayat ; Cristina Bicharra Garcia, Ana</creator><creatorcontrib>Cinalli, Daniel ; Martí, Luis ; Sanchez-Pi, Nayat ; Cristina Bicharra Garcia, Ana</creatorcontrib><description>Evolutionary multi-objective optimization algorithms (EMOAs) have been successfully applied in many real-life problems. EMOAs approximate the set of trade-offs between multiple conflicting objectives, known as the Pareto optimal set. Reference point approaches can alleviate the optimization process by highlighting relevant areas of the Pareto set and support the decision makers to take the more confident evaluation. One important drawback of this approaches is that they require an in-depth knowledge of the problem being solved in order to function correctly. Collective intelligence has been put forward as an alternative to deal with situations like these. This paper extends some well-known EMOAs to incorporate collective preferences and interactive techniques. Similarly, two new preference-based multi-objective optimization performance indicators are introduced in order to analyze the results produced by the proposed algorithms in the comparative experiments carried out.</description><identifier>ISSN: 1367-0751</identifier><identifier>EISSN: 1368-9894</identifier><identifier>DOI: 10.1093/jigpal/jzz074</identifier><language>eng</language><ispartof>Logic journal of the IGPL, 2020-02, Vol.28 (1), p.95-108</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c237t-f7bb82b13761c4bd85276e2414a45c286bcfab86371cbf565914986c42335e3d3</citedby><cites>FETCH-LOGICAL-c237t-f7bb82b13761c4bd85276e2414a45c286bcfab86371cbf565914986c42335e3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cinalli, Daniel</creatorcontrib><creatorcontrib>Martí, Luis</creatorcontrib><creatorcontrib>Sanchez-Pi, Nayat</creatorcontrib><creatorcontrib>Cristina Bicharra Garcia, Ana</creatorcontrib><title>Collective intelligence approaches in interactive evolutionary multi-objective optimization</title><title>Logic journal of the IGPL</title><description>Evolutionary multi-objective optimization algorithms (EMOAs) have been successfully applied in many real-life problems. EMOAs approximate the set of trade-offs between multiple conflicting objectives, known as the Pareto optimal set. Reference point approaches can alleviate the optimization process by highlighting relevant areas of the Pareto set and support the decision makers to take the more confident evaluation. One important drawback of this approaches is that they require an in-depth knowledge of the problem being solved in order to function correctly. Collective intelligence has been put forward as an alternative to deal with situations like these. This paper extends some well-known EMOAs to incorporate collective preferences and interactive techniques. Similarly, two new preference-based multi-objective optimization performance indicators are introduced in order to analyze the results produced by the proposed algorithms in the comparative experiments carried out.</description><issn>1367-0751</issn><issn>1368-9894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEYhIMoWKtH7_sHYvOd7FGKX1DwoicPS5Jma5bsZknSgvvrbbs9vcM7wzA8ADxi9IRRTVed3406rLppQpJdgQWmQsFa1ez6rCVEkuNbcJdzhxBiivAF-FnHEJwt_uAqPxQXgt-5wbpKj2OK2v66fPyfraTnmDvEsC8-Djr9Vf0-FA-j6S4dcSy-95M--ffgptUhu4fLXYLv15ev9TvcfL59rJ830BIqC2ylMYoYTKXAlpmt4kQKRxhmmnFLlDC21UYJKrE1LRe8xqxWwjJCKXd0S5cAzr02xZyTa5sx-f64rsGoOZFpZjLNTIb-AwXFXBk</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Cinalli, Daniel</creator><creator>Martí, Luis</creator><creator>Sanchez-Pi, Nayat</creator><creator>Cristina Bicharra Garcia, Ana</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200201</creationdate><title>Collective intelligence approaches in interactive evolutionary multi-objective optimization</title><author>Cinalli, Daniel ; Martí, Luis ; Sanchez-Pi, Nayat ; Cristina Bicharra Garcia, Ana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-f7bb82b13761c4bd85276e2414a45c286bcfab86371cbf565914986c42335e3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cinalli, Daniel</creatorcontrib><creatorcontrib>Martí, Luis</creatorcontrib><creatorcontrib>Sanchez-Pi, Nayat</creatorcontrib><creatorcontrib>Cristina Bicharra Garcia, Ana</creatorcontrib><collection>CrossRef</collection><jtitle>Logic journal of the IGPL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cinalli, Daniel</au><au>Martí, Luis</au><au>Sanchez-Pi, Nayat</au><au>Cristina Bicharra Garcia, Ana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collective intelligence approaches in interactive evolutionary multi-objective optimization</atitle><jtitle>Logic journal of the IGPL</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>28</volume><issue>1</issue><spage>95</spage><epage>108</epage><pages>95-108</pages><issn>1367-0751</issn><eissn>1368-9894</eissn><abstract>Evolutionary multi-objective optimization algorithms (EMOAs) have been successfully applied in many real-life problems. EMOAs approximate the set of trade-offs between multiple conflicting objectives, known as the Pareto optimal set. Reference point approaches can alleviate the optimization process by highlighting relevant areas of the Pareto set and support the decision makers to take the more confident evaluation. One important drawback of this approaches is that they require an in-depth knowledge of the problem being solved in order to function correctly. Collective intelligence has been put forward as an alternative to deal with situations like these. This paper extends some well-known EMOAs to incorporate collective preferences and interactive techniques. Similarly, two new preference-based multi-objective optimization performance indicators are introduced in order to analyze the results produced by the proposed algorithms in the comparative experiments carried out.</abstract><doi>10.1093/jigpal/jzz074</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-0751 |
ispartof | Logic journal of the IGPL, 2020-02, Vol.28 (1), p.95-108 |
issn | 1367-0751 1368-9894 |
language | eng |
recordid | cdi_crossref_primary_10_1093_jigpal_jzz074 |
source | Oxford Journals Online; EBSCOHost: Business Source Ultimate |
title | Collective intelligence approaches in interactive evolutionary multi-objective optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T11%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collective%20intelligence%20approaches%20in%20interactive%20evolutionary%20multi-objective%20optimization&rft.jtitle=Logic%20journal%20of%20the%20IGPL&rft.au=Cinalli,%20Daniel&rft.date=2020-02-01&rft.volume=28&rft.issue=1&rft.spage=95&rft.epage=108&rft.pages=95-108&rft.issn=1367-0751&rft.eissn=1368-9894&rft_id=info:doi/10.1093/jigpal/jzz074&rft_dat=%3Ccrossref%3E10_1093_jigpal_jzz074%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c237t-f7bb82b13761c4bd85276e2414a45c286bcfab86371cbf565914986c42335e3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |