Loading…

Collective intelligence approaches in interactive evolutionary multi-objective optimization

Evolutionary multi-objective optimization algorithms (EMOAs) have been successfully applied in many real-life problems. EMOAs approximate the set of trade-offs between multiple conflicting objectives, known as the Pareto optimal set. Reference point approaches can alleviate the optimization process...

Full description

Saved in:
Bibliographic Details
Published in:Logic journal of the IGPL 2020-02, Vol.28 (1), p.95-108
Main Authors: Cinalli, Daniel, Martí, Luis, Sanchez-Pi, Nayat, Cristina Bicharra Garcia, Ana
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c237t-f7bb82b13761c4bd85276e2414a45c286bcfab86371cbf565914986c42335e3d3
cites cdi_FETCH-LOGICAL-c237t-f7bb82b13761c4bd85276e2414a45c286bcfab86371cbf565914986c42335e3d3
container_end_page 108
container_issue 1
container_start_page 95
container_title Logic journal of the IGPL
container_volume 28
creator Cinalli, Daniel
Martí, Luis
Sanchez-Pi, Nayat
Cristina Bicharra Garcia, Ana
description Evolutionary multi-objective optimization algorithms (EMOAs) have been successfully applied in many real-life problems. EMOAs approximate the set of trade-offs between multiple conflicting objectives, known as the Pareto optimal set. Reference point approaches can alleviate the optimization process by highlighting relevant areas of the Pareto set and support the decision makers to take the more confident evaluation. One important drawback of this approaches is that they require an in-depth knowledge of the problem being solved in order to function correctly. Collective intelligence has been put forward as an alternative to deal with situations like these. This paper extends some well-known EMOAs to incorporate collective preferences and interactive techniques. Similarly, two new preference-based multi-objective optimization performance indicators are introduced in order to analyze the results produced by the proposed algorithms in the comparative experiments carried out.
doi_str_mv 10.1093/jigpal/jzz074
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_jigpal_jzz074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_jigpal_jzz074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-f7bb82b13761c4bd85276e2414a45c286bcfab86371cbf565914986c42335e3d3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKtH7_sHYvOd7FGKX1DwoicPS5Jma5bsZknSgvvrbbs9vcM7wzA8ADxi9IRRTVed3406rLppQpJdgQWmQsFa1ez6rCVEkuNbcJdzhxBiivAF-FnHEJwt_uAqPxQXgt-5wbpKj2OK2v66fPyfraTnmDvEsC8-Djr9Vf0-FA-j6S4dcSy-95M--ffgptUhu4fLXYLv15ev9TvcfL59rJ830BIqC2ylMYoYTKXAlpmt4kQKRxhmmnFLlDC21UYJKrE1LRe8xqxWwjJCKXd0S5cAzr02xZyTa5sx-f64rsGoOZFpZjLNTIb-AwXFXBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Collective intelligence approaches in interactive evolutionary multi-objective optimization</title><source>Oxford Journals Online</source><source>EBSCOHost: Business Source Ultimate</source><creator>Cinalli, Daniel ; Martí, Luis ; Sanchez-Pi, Nayat ; Cristina Bicharra Garcia, Ana</creator><creatorcontrib>Cinalli, Daniel ; Martí, Luis ; Sanchez-Pi, Nayat ; Cristina Bicharra Garcia, Ana</creatorcontrib><description>Evolutionary multi-objective optimization algorithms (EMOAs) have been successfully applied in many real-life problems. EMOAs approximate the set of trade-offs between multiple conflicting objectives, known as the Pareto optimal set. Reference point approaches can alleviate the optimization process by highlighting relevant areas of the Pareto set and support the decision makers to take the more confident evaluation. One important drawback of this approaches is that they require an in-depth knowledge of the problem being solved in order to function correctly. Collective intelligence has been put forward as an alternative to deal with situations like these. This paper extends some well-known EMOAs to incorporate collective preferences and interactive techniques. Similarly, two new preference-based multi-objective optimization performance indicators are introduced in order to analyze the results produced by the proposed algorithms in the comparative experiments carried out.</description><identifier>ISSN: 1367-0751</identifier><identifier>EISSN: 1368-9894</identifier><identifier>DOI: 10.1093/jigpal/jzz074</identifier><language>eng</language><ispartof>Logic journal of the IGPL, 2020-02, Vol.28 (1), p.95-108</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c237t-f7bb82b13761c4bd85276e2414a45c286bcfab86371cbf565914986c42335e3d3</citedby><cites>FETCH-LOGICAL-c237t-f7bb82b13761c4bd85276e2414a45c286bcfab86371cbf565914986c42335e3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cinalli, Daniel</creatorcontrib><creatorcontrib>Martí, Luis</creatorcontrib><creatorcontrib>Sanchez-Pi, Nayat</creatorcontrib><creatorcontrib>Cristina Bicharra Garcia, Ana</creatorcontrib><title>Collective intelligence approaches in interactive evolutionary multi-objective optimization</title><title>Logic journal of the IGPL</title><description>Evolutionary multi-objective optimization algorithms (EMOAs) have been successfully applied in many real-life problems. EMOAs approximate the set of trade-offs between multiple conflicting objectives, known as the Pareto optimal set. Reference point approaches can alleviate the optimization process by highlighting relevant areas of the Pareto set and support the decision makers to take the more confident evaluation. One important drawback of this approaches is that they require an in-depth knowledge of the problem being solved in order to function correctly. Collective intelligence has been put forward as an alternative to deal with situations like these. This paper extends some well-known EMOAs to incorporate collective preferences and interactive techniques. Similarly, two new preference-based multi-objective optimization performance indicators are introduced in order to analyze the results produced by the proposed algorithms in the comparative experiments carried out.</description><issn>1367-0751</issn><issn>1368-9894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEYhIMoWKtH7_sHYvOd7FGKX1DwoicPS5Jma5bsZknSgvvrbbs9vcM7wzA8ADxi9IRRTVed3406rLppQpJdgQWmQsFa1ez6rCVEkuNbcJdzhxBiivAF-FnHEJwt_uAqPxQXgt-5wbpKj2OK2v66fPyfraTnmDvEsC8-Djr9Vf0-FA-j6S4dcSy-95M--ffgptUhu4fLXYLv15ev9TvcfL59rJ830BIqC2ylMYoYTKXAlpmt4kQKRxhmmnFLlDC21UYJKrE1LRe8xqxWwjJCKXd0S5cAzr02xZyTa5sx-f64rsGoOZFpZjLNTIb-AwXFXBk</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Cinalli, Daniel</creator><creator>Martí, Luis</creator><creator>Sanchez-Pi, Nayat</creator><creator>Cristina Bicharra Garcia, Ana</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200201</creationdate><title>Collective intelligence approaches in interactive evolutionary multi-objective optimization</title><author>Cinalli, Daniel ; Martí, Luis ; Sanchez-Pi, Nayat ; Cristina Bicharra Garcia, Ana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-f7bb82b13761c4bd85276e2414a45c286bcfab86371cbf565914986c42335e3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cinalli, Daniel</creatorcontrib><creatorcontrib>Martí, Luis</creatorcontrib><creatorcontrib>Sanchez-Pi, Nayat</creatorcontrib><creatorcontrib>Cristina Bicharra Garcia, Ana</creatorcontrib><collection>CrossRef</collection><jtitle>Logic journal of the IGPL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cinalli, Daniel</au><au>Martí, Luis</au><au>Sanchez-Pi, Nayat</au><au>Cristina Bicharra Garcia, Ana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collective intelligence approaches in interactive evolutionary multi-objective optimization</atitle><jtitle>Logic journal of the IGPL</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>28</volume><issue>1</issue><spage>95</spage><epage>108</epage><pages>95-108</pages><issn>1367-0751</issn><eissn>1368-9894</eissn><abstract>Evolutionary multi-objective optimization algorithms (EMOAs) have been successfully applied in many real-life problems. EMOAs approximate the set of trade-offs between multiple conflicting objectives, known as the Pareto optimal set. Reference point approaches can alleviate the optimization process by highlighting relevant areas of the Pareto set and support the decision makers to take the more confident evaluation. One important drawback of this approaches is that they require an in-depth knowledge of the problem being solved in order to function correctly. Collective intelligence has been put forward as an alternative to deal with situations like these. This paper extends some well-known EMOAs to incorporate collective preferences and interactive techniques. Similarly, two new preference-based multi-objective optimization performance indicators are introduced in order to analyze the results produced by the proposed algorithms in the comparative experiments carried out.</abstract><doi>10.1093/jigpal/jzz074</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1367-0751
ispartof Logic journal of the IGPL, 2020-02, Vol.28 (1), p.95-108
issn 1367-0751
1368-9894
language eng
recordid cdi_crossref_primary_10_1093_jigpal_jzz074
source Oxford Journals Online; EBSCOHost: Business Source Ultimate
title Collective intelligence approaches in interactive evolutionary multi-objective optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T11%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collective%20intelligence%20approaches%20in%20interactive%20evolutionary%20multi-objective%20optimization&rft.jtitle=Logic%20journal%20of%20the%20IGPL&rft.au=Cinalli,%20Daniel&rft.date=2020-02-01&rft.volume=28&rft.issue=1&rft.spage=95&rft.epage=108&rft.pages=95-108&rft.issn=1367-0751&rft.eissn=1368-9894&rft_id=info:doi/10.1093/jigpal/jzz074&rft_dat=%3Ccrossref%3E10_1093_jigpal_jzz074%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c237t-f7bb82b13761c4bd85276e2414a45c286bcfab86371cbf565914986c42335e3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true