Loading…
Phase-shifting electron holography for accurate measurement of potential distributions in organic and inorganic semiconductors
Abstract Phase-shifting electron holography (PS-EH) is an interference transmission electron microscopy technique that accurately visualizes potential distributions in functional materials, such as semiconductors. In this paper, we briefly introduce the features of the PS-EH that overcome some of th...
Saved in:
Published in: | Microscopy 2021-02, Vol.70 (1), p.24-38 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Phase-shifting electron holography (PS-EH) is an interference transmission electron microscopy technique that accurately visualizes potential distributions in functional materials, such as semiconductors. In this paper, we briefly introduce the features of the PS-EH that overcome some of the issues facing the conventional EH based on Fourier transformation. Then, we present a high-precision PS-EH technique with multiple electron biprisms and a sample preparation technique using a cryo-focused-ion-beam, which are important techniques for the accurate phase measurement of semiconductors. We present several applications of PS-EH to demonstrate the potential in organic and inorganic semiconductors and then discuss the differences by comparing them with previous reports on the conventional EH. We show that in situ biasing PS-EH was able to observe not only electric potential distribution but also electric field and charge density at a GaAs p–n junction and clarify how local band structures, depletion layer widths and space charges changed depending on the biasing conditions. Moreover, the PS-EH clearly visualized the local potential distributions of two-dimensional electron gas layers formed at AlGaN/GaN interfaces with different Al compositions. We also report the results of our PS-EH application for organic electroluminescence multilayers and point out the significant potential changes in the layers. The proposed PS-EH enables more precise phase measurement compared to the conventional EH, and our findings introduced in this paper will contribute to the future research and development of high-performance semiconductor materials and devices. |
---|---|
ISSN: | 2050-5698 2050-5701 |
DOI: | 10.1093/jmicro/dfaa061 |