Loading…

Two-phase biomarker studies for disease progression with multiple registries

We consider the design and analysis of two-phase studies of the association between an expensive biomarker and disease progression when phase I data are obtained by pooling registries having different outcome-dependent recruitment schemes. We utilize two analysis methods, namely maximum-likelihood a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Royal Statistical Society Series C: Applied Statistics 2024-11, Vol.73 (5), p.1111-1133
Main Authors: Mao, Fangya, Cook, Richard J
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c164t-5d1813f8df9d9ad80b64ce7f7852df7c51143f1950c7bfef3322b9c15e6dd6b53
container_end_page 1133
container_issue 5
container_start_page 1111
container_title Journal of the Royal Statistical Society Series C: Applied Statistics
container_volume 73
creator Mao, Fangya
Cook, Richard J
description We consider the design and analysis of two-phase studies of the association between an expensive biomarker and disease progression when phase I data are obtained by pooling registries having different outcome-dependent recruitment schemes. We utilize two analysis methods, namely maximum-likelihood and inverse probability weighting (IPW), to handle missing covariates arising from a two-phase design. In the likelihood framework, we derive a class of residual-dependent designs for phase II sub-sampling from an observed data likelihood accounting for the phase I sampling plans used by the different registries. In the IPW approach, we derive and evaluate optimal stratified designs that approximate Neyman allocation. Simulation studies and an application to a motivating example demonstrate the finite sample improvements from the proposed designs over simple random sampling and standard stratified sampling schemes.
doi_str_mv 10.1093/jrsssc/qlae028
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_jrsssc_qlae028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_jrsssc_qlae028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c164t-5d1813f8df9d9ad80b64ce7f7852df7c51143f1950c7bfef3322b9c15e6dd6b53</originalsourceid><addsrcrecordid>eNotkMtOwzAURC0EEqGwZe0fSGvHr3iJKh6VIrEp6yixr1uXFAffVBV_T6t2NrMYzWh0CHnmbM6ZFYtdRkS3-B06YFV9QwoutSltbfQtKRgTqrSVkvfkAXHHTuJMFqRZH1M5bjsE2se07_I3ZIrTwUdAGlKmPiKc0zGnTQbEmH7oMU5buj8MUxwHoBk2Ead8KjySu9ANCE9Xn5Gvt9f18qNsPt9Xy5emdFzLqVSe11yE2gfrbedr1mvpwARTq8oH4xTnUgRuFXOmDxCEqKreOq5Ae697JWZkftl1OSFmCO2Y4-n7X8tZe2bRXli0VxbiH2e8V14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Two-phase biomarker studies for disease progression with multiple registries</title><source>Oxford Journals Online</source><creator>Mao, Fangya ; Cook, Richard J</creator><creatorcontrib>Mao, Fangya ; Cook, Richard J</creatorcontrib><description>We consider the design and analysis of two-phase studies of the association between an expensive biomarker and disease progression when phase I data are obtained by pooling registries having different outcome-dependent recruitment schemes. We utilize two analysis methods, namely maximum-likelihood and inverse probability weighting (IPW), to handle missing covariates arising from a two-phase design. In the likelihood framework, we derive a class of residual-dependent designs for phase II sub-sampling from an observed data likelihood accounting for the phase I sampling plans used by the different registries. In the IPW approach, we derive and evaluate optimal stratified designs that approximate Neyman allocation. Simulation studies and an application to a motivating example demonstrate the finite sample improvements from the proposed designs over simple random sampling and standard stratified sampling schemes.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.1093/jrsssc/qlae028</identifier><language>eng</language><ispartof>Journal of the Royal Statistical Society Series C: Applied Statistics, 2024-11, Vol.73 (5), p.1111-1133</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c164t-5d1813f8df9d9ad80b64ce7f7852df7c51143f1950c7bfef3322b9c15e6dd6b53</cites><orcidid>0000-0003-1162-4348 ; 0000-0002-1414-4908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mao, Fangya</creatorcontrib><creatorcontrib>Cook, Richard J</creatorcontrib><title>Two-phase biomarker studies for disease progression with multiple registries</title><title>Journal of the Royal Statistical Society Series C: Applied Statistics</title><description>We consider the design and analysis of two-phase studies of the association between an expensive biomarker and disease progression when phase I data are obtained by pooling registries having different outcome-dependent recruitment schemes. We utilize two analysis methods, namely maximum-likelihood and inverse probability weighting (IPW), to handle missing covariates arising from a two-phase design. In the likelihood framework, we derive a class of residual-dependent designs for phase II sub-sampling from an observed data likelihood accounting for the phase I sampling plans used by the different registries. In the IPW approach, we derive and evaluate optimal stratified designs that approximate Neyman allocation. Simulation studies and an application to a motivating example demonstrate the finite sample improvements from the proposed designs over simple random sampling and standard stratified sampling schemes.</description><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAURC0EEqGwZe0fSGvHr3iJKh6VIrEp6yixr1uXFAffVBV_T6t2NrMYzWh0CHnmbM6ZFYtdRkS3-B06YFV9QwoutSltbfQtKRgTqrSVkvfkAXHHTuJMFqRZH1M5bjsE2se07_I3ZIrTwUdAGlKmPiKc0zGnTQbEmH7oMU5buj8MUxwHoBk2Ead8KjySu9ANCE9Xn5Gvt9f18qNsPt9Xy5emdFzLqVSe11yE2gfrbedr1mvpwARTq8oH4xTnUgRuFXOmDxCEqKreOq5Ae697JWZkftl1OSFmCO2Y4-n7X8tZe2bRXli0VxbiH2e8V14</recordid><startdate>20241114</startdate><enddate>20241114</enddate><creator>Mao, Fangya</creator><creator>Cook, Richard J</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1162-4348</orcidid><orcidid>https://orcid.org/0000-0002-1414-4908</orcidid></search><sort><creationdate>20241114</creationdate><title>Two-phase biomarker studies for disease progression with multiple registries</title><author>Mao, Fangya ; Cook, Richard J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c164t-5d1813f8df9d9ad80b64ce7f7852df7c51143f1950c7bfef3322b9c15e6dd6b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Fangya</creatorcontrib><creatorcontrib>Cook, Richard J</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Royal Statistical Society Series C: Applied Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Fangya</au><au>Cook, Richard J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-phase biomarker studies for disease progression with multiple registries</atitle><jtitle>Journal of the Royal Statistical Society Series C: Applied Statistics</jtitle><date>2024-11-14</date><risdate>2024</risdate><volume>73</volume><issue>5</issue><spage>1111</spage><epage>1133</epage><pages>1111-1133</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><abstract>We consider the design and analysis of two-phase studies of the association between an expensive biomarker and disease progression when phase I data are obtained by pooling registries having different outcome-dependent recruitment schemes. We utilize two analysis methods, namely maximum-likelihood and inverse probability weighting (IPW), to handle missing covariates arising from a two-phase design. In the likelihood framework, we derive a class of residual-dependent designs for phase II sub-sampling from an observed data likelihood accounting for the phase I sampling plans used by the different registries. In the IPW approach, we derive and evaluate optimal stratified designs that approximate Neyman allocation. Simulation studies and an application to a motivating example demonstrate the finite sample improvements from the proposed designs over simple random sampling and standard stratified sampling schemes.</abstract><doi>10.1093/jrsssc/qlae028</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-1162-4348</orcidid><orcidid>https://orcid.org/0000-0002-1414-4908</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-9254
ispartof Journal of the Royal Statistical Society Series C: Applied Statistics, 2024-11, Vol.73 (5), p.1111-1133
issn 0035-9254
1467-9876
language eng
recordid cdi_crossref_primary_10_1093_jrsssc_qlae028
source Oxford Journals Online
title Two-phase biomarker studies for disease progression with multiple registries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-phase%20biomarker%20studies%20for%20disease%20progression%20with%20multiple%20registries&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society%20Series%20C:%20Applied%20Statistics&rft.au=Mao,%20Fangya&rft.date=2024-11-14&rft.volume=73&rft.issue=5&rft.spage=1111&rft.epage=1133&rft.pages=1111-1133&rft.issn=0035-9254&rft.eissn=1467-9876&rft_id=info:doi/10.1093/jrsssc/qlae028&rft_dat=%3Ccrossref%3E10_1093_jrsssc_qlae028%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c164t-5d1813f8df9d9ad80b64ce7f7852df7c51143f1950c7bfef3322b9c15e6dd6b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true