Loading…
Fully Bayesian Estimation Under Dependent and Informative Cluster Sampling
Abstract Survey data are often collected under multistage sampling designs where units are binned to clusters that are sampled in a first stage. The unit-indexed population variables of interest are typically dependent within cluster. We propose a Fully Bayesian method that constructs an exact likel...
Saved in:
Published in: | Journal of survey statistics and methodology 2023-04, Vol.11 (2), p.484-510 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Survey data are often collected under multistage sampling designs where units are binned to clusters that are sampled in a first stage. The unit-indexed population variables of interest are typically dependent within cluster. We propose a Fully Bayesian method that constructs an exact likelihood for the observed sample to incorporate unit-level marginal sampling weights for performing unbiased inference for population parameters while simultaneously accounting for the dependence induced by sampling clusters of units to produce correct uncertainty quantification. Our approach parameterizes cluster-indexed random effects in both a marginal model for the response and a conditional model for published, unit-level sampling weights. We compare our method to plug-in Bayesian and frequentist alternatives in a simulation study and demonstrate that our method most closely achieves correct uncertainty quantification for model parameters, including the generating variances for cluster-indexed random effects. We demonstrate our method in an application with NHANES data.
KEY WORDS: Inclusion probabilities; Mixed-effects linear model; NHANES; Primary stage sampling unit; Sampling weights; Survey sampling. |
---|---|
ISSN: | 2325-0984 2325-0992 |
DOI: | 10.1093/jssam/smab037 |