Loading…

About the characterization of a fine line that separates generalizations and boundary-case exceptions for the Second Incompleteness Theorem under semantic tableau deduction

Our previous research showed that the semantic tableau deductive methodology of Fitting and Smullyan permits boundary-case exceptions to the second incompleteness theorem, if multiplication is viewed as a 3-way relation (rather than as a total function). It is known that tableau methodologies prove...

Full description

Saved in:
Bibliographic Details
Published in:Journal of logic and computation 2021-01, Vol.31 (1), p.375-392
Main Author: Willard, Dan E
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c194t-eb15777f5c27b09234ebab9a541370722d1083bae50c95599fb65f59b1b8e0223
container_end_page 392
container_issue 1
container_start_page 375
container_title Journal of logic and computation
container_volume 31
creator Willard, Dan E
description Our previous research showed that the semantic tableau deductive methodology of Fitting and Smullyan permits boundary-case exceptions to the second incompleteness theorem, if multiplication is viewed as a 3-way relation (rather than as a total function). It is known that tableau methodologies prove a schema of theorems verifying all instances of the law of the excluded middle. But if one promotes this schema of theorems into formalized logical axioms, then the meaning of the pronoun of ‘I’, used by our self-referencing engine, changes quite sharply. Our partial evasions of the second incompleteness theorem shall then come to a complete halt.
doi_str_mv 10.1093/logcom/exaa083
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_logcom_exaa083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_logcom_exaa083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c194t-eb15777f5c27b09234ebab9a541370722d1083bae50c95599fb65f59b1b8e0223</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EEqWwZe0fSPEjTuplVfGoVIkFReouGjuTJiiJK9uVCt_ER-LSbmYWc-femUPII2czzrR86t3OuuEJjwBsLq_IhOeFymQht9dkwrRSWanF9pbchfDFGBMFzyfkd2HcIdLYIrUteLARffcDsXMjdQ0F2nQj0v5UYguRBtwnVcRAdziih_4iDhTGmiavsQb_nVkISPFocX8eNs7_Z3ygdUm3GtOl-x5j8giBblp0HgealtGniAHG2FkawfQIB1pjfbAnn3ty00Af8OHSp-Tz5XmzfMvW76-r5WKdWa7zmKHhqizLRllRGqaFzNGA0aByLktWClHzBMgAKmYTFq0bU6hGacPNHJkQckpmZ1_rXQgem2rvuyH9VXFWnVhXZ9bVhbX8A4tNelU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>About the characterization of a fine line that separates generalizations and boundary-case exceptions for the Second Incompleteness Theorem under semantic tableau deduction</title><source>Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)</source><creator>Willard, Dan E</creator><creatorcontrib>Willard, Dan E</creatorcontrib><description>Our previous research showed that the semantic tableau deductive methodology of Fitting and Smullyan permits boundary-case exceptions to the second incompleteness theorem, if multiplication is viewed as a 3-way relation (rather than as a total function). It is known that tableau methodologies prove a schema of theorems verifying all instances of the law of the excluded middle. But if one promotes this schema of theorems into formalized logical axioms, then the meaning of the pronoun of ‘I’, used by our self-referencing engine, changes quite sharply. Our partial evasions of the second incompleteness theorem shall then come to a complete halt.</description><identifier>ISSN: 0955-792X</identifier><identifier>EISSN: 1465-363X</identifier><identifier>DOI: 10.1093/logcom/exaa083</identifier><language>eng</language><ispartof>Journal of logic and computation, 2021-01, Vol.31 (1), p.375-392</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c194t-eb15777f5c27b09234ebab9a541370722d1083bae50c95599fb65f59b1b8e0223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27906,27907</link.rule.ids></links><search><creatorcontrib>Willard, Dan E</creatorcontrib><title>About the characterization of a fine line that separates generalizations and boundary-case exceptions for the Second Incompleteness Theorem under semantic tableau deduction</title><title>Journal of logic and computation</title><description>Our previous research showed that the semantic tableau deductive methodology of Fitting and Smullyan permits boundary-case exceptions to the second incompleteness theorem, if multiplication is viewed as a 3-way relation (rather than as a total function). It is known that tableau methodologies prove a schema of theorems verifying all instances of the law of the excluded middle. But if one promotes this schema of theorems into formalized logical axioms, then the meaning of the pronoun of ‘I’, used by our self-referencing engine, changes quite sharply. Our partial evasions of the second incompleteness theorem shall then come to a complete halt.</description><issn>0955-792X</issn><issn>1465-363X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAQRS0EEqWwZe0fSPEjTuplVfGoVIkFReouGjuTJiiJK9uVCt_ER-LSbmYWc-femUPII2czzrR86t3OuuEJjwBsLq_IhOeFymQht9dkwrRSWanF9pbchfDFGBMFzyfkd2HcIdLYIrUteLARffcDsXMjdQ0F2nQj0v5UYguRBtwnVcRAdziih_4iDhTGmiavsQb_nVkISPFocX8eNs7_Z3ygdUm3GtOl-x5j8giBblp0HgealtGniAHG2FkawfQIB1pjfbAnn3ty00Af8OHSp-Tz5XmzfMvW76-r5WKdWa7zmKHhqizLRllRGqaFzNGA0aByLktWClHzBMgAKmYTFq0bU6hGacPNHJkQckpmZ1_rXQgem2rvuyH9VXFWnVhXZ9bVhbX8A4tNelU</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Willard, Dan E</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>About the characterization of a fine line that separates generalizations and boundary-case exceptions for the Second Incompleteness Theorem under semantic tableau deduction</title><author>Willard, Dan E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c194t-eb15777f5c27b09234ebab9a541370722d1083bae50c95599fb65f59b1b8e0223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willard, Dan E</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of logic and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willard, Dan E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>About the characterization of a fine line that separates generalizations and boundary-case exceptions for the Second Incompleteness Theorem under semantic tableau deduction</atitle><jtitle>Journal of logic and computation</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>31</volume><issue>1</issue><spage>375</spage><epage>392</epage><pages>375-392</pages><issn>0955-792X</issn><eissn>1465-363X</eissn><abstract>Our previous research showed that the semantic tableau deductive methodology of Fitting and Smullyan permits boundary-case exceptions to the second incompleteness theorem, if multiplication is viewed as a 3-way relation (rather than as a total function). It is known that tableau methodologies prove a schema of theorems verifying all instances of the law of the excluded middle. But if one promotes this schema of theorems into formalized logical axioms, then the meaning of the pronoun of ‘I’, used by our self-referencing engine, changes quite sharply. Our partial evasions of the second incompleteness theorem shall then come to a complete halt.</abstract><doi>10.1093/logcom/exaa083</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-792X
ispartof Journal of logic and computation, 2021-01, Vol.31 (1), p.375-392
issn 0955-792X
1465-363X
language eng
recordid cdi_crossref_primary_10_1093_logcom_exaa083
source Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)
title About the characterization of a fine line that separates generalizations and boundary-case exceptions for the Second Incompleteness Theorem under semantic tableau deduction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=About%20the%20characterization%20of%20a%20fine%20line%20that%20separates%20generalizations%20and%20boundary-case%20exceptions%20for%20the%20Second%20Incompleteness%20Theorem%20under%20semantic%20tableau%20deduction&rft.jtitle=Journal%20of%20logic%20and%20computation&rft.au=Willard,%20Dan%20E&rft.date=2021-01-01&rft.volume=31&rft.issue=1&rft.spage=375&rft.epage=392&rft.pages=375-392&rft.issn=0955-792X&rft.eissn=1465-363X&rft_id=info:doi/10.1093/logcom/exaa083&rft_dat=%3Ccrossref%3E10_1093_logcom_exaa083%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c194t-eb15777f5c27b09234ebab9a541370722d1083bae50c95599fb65f59b1b8e0223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true