Loading…

On the expressive power of Łukasiewicz square operator

The aim of the paper is to analyze the expressive power of the square operator of Łukasiewicz logic: $\ast x=x\odot x$, where $\odot $ is the strong Łukasiewicz conjunction. In particular, we aim at understanding and characterizing those cases in which the square operator is enough to construct a fi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of logic and computation 2022-06, Vol.32 (4), p.767-807
Main Authors: Coniglio, Marcelo E, Esteva, Francesc, Flaminio, Tommaso, Godo, Lluís
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c234t-fe3d546e6c3639acdf36634889fc6c8500132bdb1297a6a98ae35ab07f2ea9923
container_end_page 807
container_issue 4
container_start_page 767
container_title Journal of logic and computation
container_volume 32
creator Coniglio, Marcelo E
Esteva, Francesc
Flaminio, Tommaso
Godo, Lluís
description The aim of the paper is to analyze the expressive power of the square operator of Łukasiewicz logic: $\ast x=x\odot x$, where $\odot $ is the strong Łukasiewicz conjunction. In particular, we aim at understanding and characterizing those cases in which the square operator is enough to construct a finite MV-chain from a finite totally ordered set endowed with an involutive negation. The first of our main results shows that, indeed, the whole structure of MV-chain can be reconstructed from the involution and the Łukasiewicz square operator if and only if the obtained structure has only trivial subalgebras and, equivalently, if and only if the cardinality of the starting chain is of the form $n+1$ where $n$ belongs to a class of prime numbers that we fully characterize. Secondly, we axiomatize the algebraizable matrix logic whose semantics is given by the variety generated by a finite totally ordered set endowed with an involutive negation and Łukasiewicz square operator. Finally, we propose an alternative way to account for Łukasiewicz square operator on involutive Gödel chains. In this setting, we show that such an operator can be captured by a rather intuitive set of equations.
doi_str_mv 10.1093/logcom/exab064
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_logcom_exab064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_logcom_exab064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234t-fe3d546e6c3639acdf36634889fc6c8500132bdb1297a6a98ae35ab07f2ea9923</originalsourceid><addsrcrecordid>eNotz71OwzAYhWELgUQorMy-gbS2P9uJR1TxU6lSF5C6WY7zGQItDnZKCxsXx31R1E5nO3ofQq45G3NmYLKKzz6uJ7hzDdPyhBRcalWChuUpKZhRqqyMWJ6Ti5xfGWNCc1mQavFOhxekuOsT5tx9Iu3jFhONgf7-bN5c7nDb-W-aPzYuIY09JjfEdEnOgltlvDruiDzd3T5OH8r54n42vZmXXoAcyoDQKqlR-32Hcb4NoDXIujbBa18rxjiIpm24MJXTztQOQe37qyDQGSNgRMaHX59izgmD7VO3dunLcmb_2fbAtkc2_AGRWU8s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the expressive power of Łukasiewicz square operator</title><source>Oxford Journals Online</source><creator>Coniglio, Marcelo E ; Esteva, Francesc ; Flaminio, Tommaso ; Godo, Lluís</creator><creatorcontrib>Coniglio, Marcelo E ; Esteva, Francesc ; Flaminio, Tommaso ; Godo, Lluís</creatorcontrib><description>The aim of the paper is to analyze the expressive power of the square operator of Łukasiewicz logic: $\ast x=x\odot x$, where $\odot $ is the strong Łukasiewicz conjunction. In particular, we aim at understanding and characterizing those cases in which the square operator is enough to construct a finite MV-chain from a finite totally ordered set endowed with an involutive negation. The first of our main results shows that, indeed, the whole structure of MV-chain can be reconstructed from the involution and the Łukasiewicz square operator if and only if the obtained structure has only trivial subalgebras and, equivalently, if and only if the cardinality of the starting chain is of the form $n+1$ where $n$ belongs to a class of prime numbers that we fully characterize. Secondly, we axiomatize the algebraizable matrix logic whose semantics is given by the variety generated by a finite totally ordered set endowed with an involutive negation and Łukasiewicz square operator. Finally, we propose an alternative way to account for Łukasiewicz square operator on involutive Gödel chains. In this setting, we show that such an operator can be captured by a rather intuitive set of equations.</description><identifier>ISSN: 0955-792X</identifier><identifier>EISSN: 1465-363X</identifier><identifier>DOI: 10.1093/logcom/exab064</identifier><language>eng</language><ispartof>Journal of logic and computation, 2022-06, Vol.32 (4), p.767-807</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c234t-fe3d546e6c3639acdf36634889fc6c8500132bdb1297a6a98ae35ab07f2ea9923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Coniglio, Marcelo E</creatorcontrib><creatorcontrib>Esteva, Francesc</creatorcontrib><creatorcontrib>Flaminio, Tommaso</creatorcontrib><creatorcontrib>Godo, Lluís</creatorcontrib><title>On the expressive power of Łukasiewicz square operator</title><title>Journal of logic and computation</title><description>The aim of the paper is to analyze the expressive power of the square operator of Łukasiewicz logic: $\ast x=x\odot x$, where $\odot $ is the strong Łukasiewicz conjunction. In particular, we aim at understanding and characterizing those cases in which the square operator is enough to construct a finite MV-chain from a finite totally ordered set endowed with an involutive negation. The first of our main results shows that, indeed, the whole structure of MV-chain can be reconstructed from the involution and the Łukasiewicz square operator if and only if the obtained structure has only trivial subalgebras and, equivalently, if and only if the cardinality of the starting chain is of the form $n+1$ where $n$ belongs to a class of prime numbers that we fully characterize. Secondly, we axiomatize the algebraizable matrix logic whose semantics is given by the variety generated by a finite totally ordered set endowed with an involutive negation and Łukasiewicz square operator. Finally, we propose an alternative way to account for Łukasiewicz square operator on involutive Gödel chains. In this setting, we show that such an operator can be captured by a rather intuitive set of equations.</description><issn>0955-792X</issn><issn>1465-363X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotz71OwzAYhWELgUQorMy-gbS2P9uJR1TxU6lSF5C6WY7zGQItDnZKCxsXx31R1E5nO3ofQq45G3NmYLKKzz6uJ7hzDdPyhBRcalWChuUpKZhRqqyMWJ6Ti5xfGWNCc1mQavFOhxekuOsT5tx9Iu3jFhONgf7-bN5c7nDb-W-aPzYuIY09JjfEdEnOgltlvDruiDzd3T5OH8r54n42vZmXXoAcyoDQKqlR-32Hcb4NoDXIujbBa18rxjiIpm24MJXTztQOQe37qyDQGSNgRMaHX59izgmD7VO3dunLcmb_2fbAtkc2_AGRWU8s</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Coniglio, Marcelo E</creator><creator>Esteva, Francesc</creator><creator>Flaminio, Tommaso</creator><creator>Godo, Lluís</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>On the expressive power of Łukasiewicz square operator</title><author>Coniglio, Marcelo E ; Esteva, Francesc ; Flaminio, Tommaso ; Godo, Lluís</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234t-fe3d546e6c3639acdf36634889fc6c8500132bdb1297a6a98ae35ab07f2ea9923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coniglio, Marcelo E</creatorcontrib><creatorcontrib>Esteva, Francesc</creatorcontrib><creatorcontrib>Flaminio, Tommaso</creatorcontrib><creatorcontrib>Godo, Lluís</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of logic and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coniglio, Marcelo E</au><au>Esteva, Francesc</au><au>Flaminio, Tommaso</au><au>Godo, Lluís</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the expressive power of Łukasiewicz square operator</atitle><jtitle>Journal of logic and computation</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>32</volume><issue>4</issue><spage>767</spage><epage>807</epage><pages>767-807</pages><issn>0955-792X</issn><eissn>1465-363X</eissn><abstract>The aim of the paper is to analyze the expressive power of the square operator of Łukasiewicz logic: $\ast x=x\odot x$, where $\odot $ is the strong Łukasiewicz conjunction. In particular, we aim at understanding and characterizing those cases in which the square operator is enough to construct a finite MV-chain from a finite totally ordered set endowed with an involutive negation. The first of our main results shows that, indeed, the whole structure of MV-chain can be reconstructed from the involution and the Łukasiewicz square operator if and only if the obtained structure has only trivial subalgebras and, equivalently, if and only if the cardinality of the starting chain is of the form $n+1$ where $n$ belongs to a class of prime numbers that we fully characterize. Secondly, we axiomatize the algebraizable matrix logic whose semantics is given by the variety generated by a finite totally ordered set endowed with an involutive negation and Łukasiewicz square operator. Finally, we propose an alternative way to account for Łukasiewicz square operator on involutive Gödel chains. In this setting, we show that such an operator can be captured by a rather intuitive set of equations.</abstract><doi>10.1093/logcom/exab064</doi><tpages>41</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0955-792X
ispartof Journal of logic and computation, 2022-06, Vol.32 (4), p.767-807
issn 0955-792X
1465-363X
language eng
recordid cdi_crossref_primary_10_1093_logcom_exab064
source Oxford Journals Online
title On the expressive power of Łukasiewicz square operator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A21%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20expressive%20power%20of%20%C5%81ukasiewicz%20square%20operator&rft.jtitle=Journal%20of%20logic%20and%20computation&rft.au=Coniglio,%20Marcelo%20E&rft.date=2022-06-01&rft.volume=32&rft.issue=4&rft.spage=767&rft.epage=807&rft.pages=767-807&rft.issn=0955-792X&rft.eissn=1465-363X&rft_id=info:doi/10.1093/logcom/exab064&rft_dat=%3Ccrossref%3E10_1093_logcom_exab064%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c234t-fe3d546e6c3639acdf36634889fc6c8500132bdb1297a6a98ae35ab07f2ea9923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true