Loading…
On the expressive power of Łukasiewicz square operator
The aim of the paper is to analyze the expressive power of the square operator of Łukasiewicz logic: $\ast x=x\odot x$, where $\odot $ is the strong Łukasiewicz conjunction. In particular, we aim at understanding and characterizing those cases in which the square operator is enough to construct a fi...
Saved in:
Published in: | Journal of logic and computation 2022-06, Vol.32 (4), p.767-807 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c234t-fe3d546e6c3639acdf36634889fc6c8500132bdb1297a6a98ae35ab07f2ea9923 |
container_end_page | 807 |
container_issue | 4 |
container_start_page | 767 |
container_title | Journal of logic and computation |
container_volume | 32 |
creator | Coniglio, Marcelo E Esteva, Francesc Flaminio, Tommaso Godo, Lluís |
description | The aim of the paper is to analyze the expressive power of the square operator of Łukasiewicz logic: $\ast x=x\odot x$, where $\odot $ is the strong Łukasiewicz conjunction. In particular, we aim at understanding and characterizing those cases in which the square operator is enough to construct a finite MV-chain from a finite totally ordered set endowed with an involutive negation. The first of our main results shows that, indeed, the whole structure of MV-chain can be reconstructed from the involution and the Łukasiewicz square operator if and only if the obtained structure has only trivial subalgebras and, equivalently, if and only if the cardinality of the starting chain is of the form $n+1$ where $n$ belongs to a class of prime numbers that we fully characterize. Secondly, we axiomatize the algebraizable matrix logic whose semantics is given by the variety generated by a finite totally ordered set endowed with an involutive negation and Łukasiewicz square operator. Finally, we propose an alternative way to account for Łukasiewicz square operator on involutive Gödel chains. In this setting, we show that such an operator can be captured by a rather intuitive set of equations. |
doi_str_mv | 10.1093/logcom/exab064 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_logcom_exab064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_logcom_exab064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234t-fe3d546e6c3639acdf36634889fc6c8500132bdb1297a6a98ae35ab07f2ea9923</originalsourceid><addsrcrecordid>eNotz71OwzAYhWELgUQorMy-gbS2P9uJR1TxU6lSF5C6WY7zGQItDnZKCxsXx31R1E5nO3ofQq45G3NmYLKKzz6uJ7hzDdPyhBRcalWChuUpKZhRqqyMWJ6Ti5xfGWNCc1mQavFOhxekuOsT5tx9Iu3jFhONgf7-bN5c7nDb-W-aPzYuIY09JjfEdEnOgltlvDruiDzd3T5OH8r54n42vZmXXoAcyoDQKqlR-32Hcb4NoDXIujbBa18rxjiIpm24MJXTztQOQe37qyDQGSNgRMaHX59izgmD7VO3dunLcmb_2fbAtkc2_AGRWU8s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the expressive power of Łukasiewicz square operator</title><source>Oxford Journals Online</source><creator>Coniglio, Marcelo E ; Esteva, Francesc ; Flaminio, Tommaso ; Godo, Lluís</creator><creatorcontrib>Coniglio, Marcelo E ; Esteva, Francesc ; Flaminio, Tommaso ; Godo, Lluís</creatorcontrib><description>The aim of the paper is to analyze the expressive power of the square operator of Łukasiewicz logic: $\ast x=x\odot x$, where $\odot $ is the strong Łukasiewicz conjunction. In particular, we aim at understanding and characterizing those cases in which the square operator is enough to construct a finite MV-chain from a finite totally ordered set endowed with an involutive negation. The first of our main results shows that, indeed, the whole structure of MV-chain can be reconstructed from the involution and the Łukasiewicz square operator if and only if the obtained structure has only trivial subalgebras and, equivalently, if and only if the cardinality of the starting chain is of the form $n+1$ where $n$ belongs to a class of prime numbers that we fully characterize. Secondly, we axiomatize the algebraizable matrix logic whose semantics is given by the variety generated by a finite totally ordered set endowed with an involutive negation and Łukasiewicz square operator. Finally, we propose an alternative way to account for Łukasiewicz square operator on involutive Gödel chains. In this setting, we show that such an operator can be captured by a rather intuitive set of equations.</description><identifier>ISSN: 0955-792X</identifier><identifier>EISSN: 1465-363X</identifier><identifier>DOI: 10.1093/logcom/exab064</identifier><language>eng</language><ispartof>Journal of logic and computation, 2022-06, Vol.32 (4), p.767-807</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c234t-fe3d546e6c3639acdf36634889fc6c8500132bdb1297a6a98ae35ab07f2ea9923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Coniglio, Marcelo E</creatorcontrib><creatorcontrib>Esteva, Francesc</creatorcontrib><creatorcontrib>Flaminio, Tommaso</creatorcontrib><creatorcontrib>Godo, Lluís</creatorcontrib><title>On the expressive power of Łukasiewicz square operator</title><title>Journal of logic and computation</title><description>The aim of the paper is to analyze the expressive power of the square operator of Łukasiewicz logic: $\ast x=x\odot x$, where $\odot $ is the strong Łukasiewicz conjunction. In particular, we aim at understanding and characterizing those cases in which the square operator is enough to construct a finite MV-chain from a finite totally ordered set endowed with an involutive negation. The first of our main results shows that, indeed, the whole structure of MV-chain can be reconstructed from the involution and the Łukasiewicz square operator if and only if the obtained structure has only trivial subalgebras and, equivalently, if and only if the cardinality of the starting chain is of the form $n+1$ where $n$ belongs to a class of prime numbers that we fully characterize. Secondly, we axiomatize the algebraizable matrix logic whose semantics is given by the variety generated by a finite totally ordered set endowed with an involutive negation and Łukasiewicz square operator. Finally, we propose an alternative way to account for Łukasiewicz square operator on involutive Gödel chains. In this setting, we show that such an operator can be captured by a rather intuitive set of equations.</description><issn>0955-792X</issn><issn>1465-363X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotz71OwzAYhWELgUQorMy-gbS2P9uJR1TxU6lSF5C6WY7zGQItDnZKCxsXx31R1E5nO3ofQq45G3NmYLKKzz6uJ7hzDdPyhBRcalWChuUpKZhRqqyMWJ6Ti5xfGWNCc1mQavFOhxekuOsT5tx9Iu3jFhONgf7-bN5c7nDb-W-aPzYuIY09JjfEdEnOgltlvDruiDzd3T5OH8r54n42vZmXXoAcyoDQKqlR-32Hcb4NoDXIujbBa18rxjiIpm24MJXTztQOQe37qyDQGSNgRMaHX59izgmD7VO3dunLcmb_2fbAtkc2_AGRWU8s</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Coniglio, Marcelo E</creator><creator>Esteva, Francesc</creator><creator>Flaminio, Tommaso</creator><creator>Godo, Lluís</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>On the expressive power of Łukasiewicz square operator</title><author>Coniglio, Marcelo E ; Esteva, Francesc ; Flaminio, Tommaso ; Godo, Lluís</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234t-fe3d546e6c3639acdf36634889fc6c8500132bdb1297a6a98ae35ab07f2ea9923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coniglio, Marcelo E</creatorcontrib><creatorcontrib>Esteva, Francesc</creatorcontrib><creatorcontrib>Flaminio, Tommaso</creatorcontrib><creatorcontrib>Godo, Lluís</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of logic and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coniglio, Marcelo E</au><au>Esteva, Francesc</au><au>Flaminio, Tommaso</au><au>Godo, Lluís</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the expressive power of Łukasiewicz square operator</atitle><jtitle>Journal of logic and computation</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>32</volume><issue>4</issue><spage>767</spage><epage>807</epage><pages>767-807</pages><issn>0955-792X</issn><eissn>1465-363X</eissn><abstract>The aim of the paper is to analyze the expressive power of the square operator of Łukasiewicz logic: $\ast x=x\odot x$, where $\odot $ is the strong Łukasiewicz conjunction. In particular, we aim at understanding and characterizing those cases in which the square operator is enough to construct a finite MV-chain from a finite totally ordered set endowed with an involutive negation. The first of our main results shows that, indeed, the whole structure of MV-chain can be reconstructed from the involution and the Łukasiewicz square operator if and only if the obtained structure has only trivial subalgebras and, equivalently, if and only if the cardinality of the starting chain is of the form $n+1$ where $n$ belongs to a class of prime numbers that we fully characterize. Secondly, we axiomatize the algebraizable matrix logic whose semantics is given by the variety generated by a finite totally ordered set endowed with an involutive negation and Łukasiewicz square operator. Finally, we propose an alternative way to account for Łukasiewicz square operator on involutive Gödel chains. In this setting, we show that such an operator can be captured by a rather intuitive set of equations.</abstract><doi>10.1093/logcom/exab064</doi><tpages>41</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-792X |
ispartof | Journal of logic and computation, 2022-06, Vol.32 (4), p.767-807 |
issn | 0955-792X 1465-363X |
language | eng |
recordid | cdi_crossref_primary_10_1093_logcom_exab064 |
source | Oxford Journals Online |
title | On the expressive power of Łukasiewicz square operator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A21%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20expressive%20power%20of%20%C5%81ukasiewicz%20square%20operator&rft.jtitle=Journal%20of%20logic%20and%20computation&rft.au=Coniglio,%20Marcelo%20E&rft.date=2022-06-01&rft.volume=32&rft.issue=4&rft.spage=767&rft.epage=807&rft.pages=767-807&rft.issn=0955-792X&rft.eissn=1465-363X&rft_id=info:doi/10.1093/logcom/exab064&rft_dat=%3Ccrossref%3E10_1093_logcom_exab064%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c234t-fe3d546e6c3639acdf36634889fc6c8500132bdb1297a6a98ae35ab07f2ea9923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |