Loading…
Modal structures in groups and vector spaces
Abstract Vector spaces contain a number of general structures that invite analysis in modal languages. The resulting logical systems provide an interesting counterpart to the much better-studied modal logics of topological spaces. In this programmatic paper, we investigate issues of definability and...
Saved in:
Published in: | Journal of logic and computation 2024-01, Vol.34 (1), p.75-124 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-a0e610afa0f3bed1c540475a41a911711f61cd8e182d2b021370fe09078a03113 |
container_end_page | 124 |
container_issue | 1 |
container_start_page | 75 |
container_title | Journal of logic and computation |
container_volume | 34 |
creator | van Benthem, Johan Bezhanishvili, Nick |
description | Abstract
Vector spaces contain a number of general structures that invite analysis in modal languages. The resulting logical systems provide an interesting counterpart to the much better-studied modal logics of topological spaces. In this programmatic paper, we investigate issues of definability and axiomatization using standard techniques for modal and hybrid languages. The analysis proceeds in stages. We first present a modal analysis of commutative groups that establishes our main techniques, next we introduce a new modal logic of linear dependence and independence in vector spaces and, finally, we study a modal logic for describing full-fledged vector spaces. While still far from covering every basic aspect of linear algebra, our discussion identifies several leads for more systematic research. |
doi_str_mv | 10.1093/logcom/exac105 |
format | article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_logcom_exac105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/logcom/exac105</oup_id><sourcerecordid>10.1093/logcom/exac105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-a0e610afa0f3bed1c540475a41a911711f61cd8e182d2b021370fe09078a03113</originalsourceid><addsrcrecordid>eNqFj8FLwzAYxYMoWKdXz7kKdvu-pEnaowydwmSXCbuVb2kyJt1Sklb0v3fS3T29y_s93o-xe4QpQiVnbdjZcJi5b7II6oJlWGiVSy03lyyDSqncVGJzzW5S-gQAobHI2ON7aKjlqY-D7YfoEt8f-S6GoUucjg3_crYPkaeOrEu37MpTm9zdOSfs4-V5PX_Nl6vF2_xpmVuhyz4ncBqBPIGXW9egVQUURlGBVCEaRK_RNqXDUjRiCwKlAe-gAlMSSEQ5YdNx18aQUnS-7uL-QPGnRqj_XOvRtT67noCHETj9_q_7C8zTV30</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modal structures in groups and vector spaces</title><source>Oxford Journals Online</source><creator>van Benthem, Johan ; Bezhanishvili, Nick</creator><creatorcontrib>van Benthem, Johan ; Bezhanishvili, Nick</creatorcontrib><description>Abstract
Vector spaces contain a number of general structures that invite analysis in modal languages. The resulting logical systems provide an interesting counterpart to the much better-studied modal logics of topological spaces. In this programmatic paper, we investigate issues of definability and axiomatization using standard techniques for modal and hybrid languages. The analysis proceeds in stages. We first present a modal analysis of commutative groups that establishes our main techniques, next we introduce a new modal logic of linear dependence and independence in vector spaces and, finally, we study a modal logic for describing full-fledged vector spaces. While still far from covering every basic aspect of linear algebra, our discussion identifies several leads for more systematic research.</description><identifier>ISSN: 0955-792X</identifier><identifier>EISSN: 1465-363X</identifier><identifier>DOI: 10.1093/logcom/exac105</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of logic and computation, 2024-01, Vol.34 (1), p.75-124</ispartof><rights>The Author(s) 2023. Published by Oxford University Press. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-a0e610afa0f3bed1c540475a41a911711f61cd8e182d2b021370fe09078a03113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>van Benthem, Johan</creatorcontrib><creatorcontrib>Bezhanishvili, Nick</creatorcontrib><title>Modal structures in groups and vector spaces</title><title>Journal of logic and computation</title><description>Abstract
Vector spaces contain a number of general structures that invite analysis in modal languages. The resulting logical systems provide an interesting counterpart to the much better-studied modal logics of topological spaces. In this programmatic paper, we investigate issues of definability and axiomatization using standard techniques for modal and hybrid languages. The analysis proceeds in stages. We first present a modal analysis of commutative groups that establishes our main techniques, next we introduce a new modal logic of linear dependence and independence in vector spaces and, finally, we study a modal logic for describing full-fledged vector spaces. While still far from covering every basic aspect of linear algebra, our discussion identifies several leads for more systematic research.</description><issn>0955-792X</issn><issn>1465-363X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFj8FLwzAYxYMoWKdXz7kKdvu-pEnaowydwmSXCbuVb2kyJt1Sklb0v3fS3T29y_s93o-xe4QpQiVnbdjZcJi5b7II6oJlWGiVSy03lyyDSqncVGJzzW5S-gQAobHI2ON7aKjlqY-D7YfoEt8f-S6GoUucjg3_crYPkaeOrEu37MpTm9zdOSfs4-V5PX_Nl6vF2_xpmVuhyz4ncBqBPIGXW9egVQUURlGBVCEaRK_RNqXDUjRiCwKlAe-gAlMSSEQ5YdNx18aQUnS-7uL-QPGnRqj_XOvRtT67noCHETj9_q_7C8zTV30</recordid><startdate>20240122</startdate><enddate>20240122</enddate><creator>van Benthem, Johan</creator><creator>Bezhanishvili, Nick</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240122</creationdate><title>Modal structures in groups and vector spaces</title><author>van Benthem, Johan ; Bezhanishvili, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-a0e610afa0f3bed1c540475a41a911711f61cd8e182d2b021370fe09078a03113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Benthem, Johan</creatorcontrib><creatorcontrib>Bezhanishvili, Nick</creatorcontrib><collection>Oxford Open</collection><collection>CrossRef</collection><jtitle>Journal of logic and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Benthem, Johan</au><au>Bezhanishvili, Nick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modal structures in groups and vector spaces</atitle><jtitle>Journal of logic and computation</jtitle><date>2024-01-22</date><risdate>2024</risdate><volume>34</volume><issue>1</issue><spage>75</spage><epage>124</epage><pages>75-124</pages><issn>0955-792X</issn><eissn>1465-363X</eissn><abstract>Abstract
Vector spaces contain a number of general structures that invite analysis in modal languages. The resulting logical systems provide an interesting counterpart to the much better-studied modal logics of topological spaces. In this programmatic paper, we investigate issues of definability and axiomatization using standard techniques for modal and hybrid languages. The analysis proceeds in stages. We first present a modal analysis of commutative groups that establishes our main techniques, next we introduce a new modal logic of linear dependence and independence in vector spaces and, finally, we study a modal logic for describing full-fledged vector spaces. While still far from covering every basic aspect of linear algebra, our discussion identifies several leads for more systematic research.</abstract><pub>Oxford University Press</pub><doi>10.1093/logcom/exac105</doi><tpages>50</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-792X |
ispartof | Journal of logic and computation, 2024-01, Vol.34 (1), p.75-124 |
issn | 0955-792X 1465-363X |
language | eng |
recordid | cdi_crossref_primary_10_1093_logcom_exac105 |
source | Oxford Journals Online |
title | Modal structures in groups and vector spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modal%20structures%20in%20groups%20and%20vector%20spaces&rft.jtitle=Journal%20of%20logic%20and%20computation&rft.au=van%20Benthem,%20Johan&rft.date=2024-01-22&rft.volume=34&rft.issue=1&rft.spage=75&rft.epage=124&rft.pages=75-124&rft.issn=0955-792X&rft.eissn=1465-363X&rft_id=info:doi/10.1093/logcom/exac105&rft_dat=%3Coup_cross%3E10.1093/logcom/exac105%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-a0e610afa0f3bed1c540475a41a911711f61cd8e182d2b021370fe09078a03113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/logcom/exac105&rfr_iscdi=true |