Loading…

Modal structures in groups and vector spaces

Abstract Vector spaces contain a number of general structures that invite analysis in modal languages. The resulting logical systems provide an interesting counterpart to the much better-studied modal logics of topological spaces. In this programmatic paper, we investigate issues of definability and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of logic and computation 2024-01, Vol.34 (1), p.75-124
Main Authors: van Benthem, Johan, Bezhanishvili, Nick
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-a0e610afa0f3bed1c540475a41a911711f61cd8e182d2b021370fe09078a03113
container_end_page 124
container_issue 1
container_start_page 75
container_title Journal of logic and computation
container_volume 34
creator van Benthem, Johan
Bezhanishvili, Nick
description Abstract Vector spaces contain a number of general structures that invite analysis in modal languages. The resulting logical systems provide an interesting counterpart to the much better-studied modal logics of topological spaces. In this programmatic paper, we investigate issues of definability and axiomatization using standard techniques for modal and hybrid languages. The analysis proceeds in stages. We first present a modal analysis of commutative groups that establishes our main techniques, next we introduce a new modal logic of linear dependence and independence in vector spaces and, finally, we study a modal logic for describing full-fledged vector spaces. While still far from covering every basic aspect of linear algebra, our discussion identifies several leads for more systematic research.
doi_str_mv 10.1093/logcom/exac105
format article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_logcom_exac105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/logcom/exac105</oup_id><sourcerecordid>10.1093/logcom/exac105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-a0e610afa0f3bed1c540475a41a911711f61cd8e182d2b021370fe09078a03113</originalsourceid><addsrcrecordid>eNqFj8FLwzAYxYMoWKdXz7kKdvu-pEnaowydwmSXCbuVb2kyJt1Sklb0v3fS3T29y_s93o-xe4QpQiVnbdjZcJi5b7II6oJlWGiVSy03lyyDSqncVGJzzW5S-gQAobHI2ON7aKjlqY-D7YfoEt8f-S6GoUucjg3_crYPkaeOrEu37MpTm9zdOSfs4-V5PX_Nl6vF2_xpmVuhyz4ncBqBPIGXW9egVQUURlGBVCEaRK_RNqXDUjRiCwKlAe-gAlMSSEQ5YdNx18aQUnS-7uL-QPGnRqj_XOvRtT67noCHETj9_q_7C8zTV30</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modal structures in groups and vector spaces</title><source>Oxford Journals Online</source><creator>van Benthem, Johan ; Bezhanishvili, Nick</creator><creatorcontrib>van Benthem, Johan ; Bezhanishvili, Nick</creatorcontrib><description>Abstract Vector spaces contain a number of general structures that invite analysis in modal languages. The resulting logical systems provide an interesting counterpart to the much better-studied modal logics of topological spaces. In this programmatic paper, we investigate issues of definability and axiomatization using standard techniques for modal and hybrid languages. The analysis proceeds in stages. We first present a modal analysis of commutative groups that establishes our main techniques, next we introduce a new modal logic of linear dependence and independence in vector spaces and, finally, we study a modal logic for describing full-fledged vector spaces. While still far from covering every basic aspect of linear algebra, our discussion identifies several leads for more systematic research.</description><identifier>ISSN: 0955-792X</identifier><identifier>EISSN: 1465-363X</identifier><identifier>DOI: 10.1093/logcom/exac105</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of logic and computation, 2024-01, Vol.34 (1), p.75-124</ispartof><rights>The Author(s) 2023. Published by Oxford University Press. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-a0e610afa0f3bed1c540475a41a911711f61cd8e182d2b021370fe09078a03113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>van Benthem, Johan</creatorcontrib><creatorcontrib>Bezhanishvili, Nick</creatorcontrib><title>Modal structures in groups and vector spaces</title><title>Journal of logic and computation</title><description>Abstract Vector spaces contain a number of general structures that invite analysis in modal languages. The resulting logical systems provide an interesting counterpart to the much better-studied modal logics of topological spaces. In this programmatic paper, we investigate issues of definability and axiomatization using standard techniques for modal and hybrid languages. The analysis proceeds in stages. We first present a modal analysis of commutative groups that establishes our main techniques, next we introduce a new modal logic of linear dependence and independence in vector spaces and, finally, we study a modal logic for describing full-fledged vector spaces. While still far from covering every basic aspect of linear algebra, our discussion identifies several leads for more systematic research.</description><issn>0955-792X</issn><issn>1465-363X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFj8FLwzAYxYMoWKdXz7kKdvu-pEnaowydwmSXCbuVb2kyJt1Sklb0v3fS3T29y_s93o-xe4QpQiVnbdjZcJi5b7II6oJlWGiVSy03lyyDSqncVGJzzW5S-gQAobHI2ON7aKjlqY-D7YfoEt8f-S6GoUucjg3_crYPkaeOrEu37MpTm9zdOSfs4-V5PX_Nl6vF2_xpmVuhyz4ncBqBPIGXW9egVQUURlGBVCEaRK_RNqXDUjRiCwKlAe-gAlMSSEQ5YdNx18aQUnS-7uL-QPGnRqj_XOvRtT67noCHETj9_q_7C8zTV30</recordid><startdate>20240122</startdate><enddate>20240122</enddate><creator>van Benthem, Johan</creator><creator>Bezhanishvili, Nick</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240122</creationdate><title>Modal structures in groups and vector spaces</title><author>van Benthem, Johan ; Bezhanishvili, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-a0e610afa0f3bed1c540475a41a911711f61cd8e182d2b021370fe09078a03113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Benthem, Johan</creatorcontrib><creatorcontrib>Bezhanishvili, Nick</creatorcontrib><collection>Oxford Open</collection><collection>CrossRef</collection><jtitle>Journal of logic and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Benthem, Johan</au><au>Bezhanishvili, Nick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modal structures in groups and vector spaces</atitle><jtitle>Journal of logic and computation</jtitle><date>2024-01-22</date><risdate>2024</risdate><volume>34</volume><issue>1</issue><spage>75</spage><epage>124</epage><pages>75-124</pages><issn>0955-792X</issn><eissn>1465-363X</eissn><abstract>Abstract Vector spaces contain a number of general structures that invite analysis in modal languages. The resulting logical systems provide an interesting counterpart to the much better-studied modal logics of topological spaces. In this programmatic paper, we investigate issues of definability and axiomatization using standard techniques for modal and hybrid languages. The analysis proceeds in stages. We first present a modal analysis of commutative groups that establishes our main techniques, next we introduce a new modal logic of linear dependence and independence in vector spaces and, finally, we study a modal logic for describing full-fledged vector spaces. While still far from covering every basic aspect of linear algebra, our discussion identifies several leads for more systematic research.</abstract><pub>Oxford University Press</pub><doi>10.1093/logcom/exac105</doi><tpages>50</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0955-792X
ispartof Journal of logic and computation, 2024-01, Vol.34 (1), p.75-124
issn 0955-792X
1465-363X
language eng
recordid cdi_crossref_primary_10_1093_logcom_exac105
source Oxford Journals Online
title Modal structures in groups and vector spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modal%20structures%20in%20groups%20and%20vector%20spaces&rft.jtitle=Journal%20of%20logic%20and%20computation&rft.au=van%20Benthem,%20Johan&rft.date=2024-01-22&rft.volume=34&rft.issue=1&rft.spage=75&rft.epage=124&rft.pages=75-124&rft.issn=0955-792X&rft.eissn=1465-363X&rft_id=info:doi/10.1093/logcom/exac105&rft_dat=%3Coup_cross%3E10.1093/logcom/exac105%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-a0e610afa0f3bed1c540475a41a911711f61cd8e182d2b021370fe09078a03113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/logcom/exac105&rfr_iscdi=true