Loading…
The nuclear region of NGC 613 – I. Multiwavelength analysis
ABSTRACT In this paper, we report a detailed study with a variety of data from optical, near-infrared, X-ray, and radio telescopes of the nuclear region of the galaxy NGC 613 with the aim of understanding its complexity. We detected an extended stellar emission in the nucleus that, at first, appears...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2020-03, Vol.492 (4), p.5121-5140 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
In this paper, we report a detailed study with a variety of data from optical, near-infrared, X-ray, and radio telescopes of the nuclear region of the galaxy NGC 613 with the aim of understanding its complexity. We detected an extended stellar emission in the nucleus that, at first, appears to be, in the optical band, two stellar nuclei separated by a stream of dust. The active galactic nucleus (AGN) is identified as a variable point-like source between these two stellar components. There is a central hard X-ray emission and an extended soft X-ray emission that closely coincides with the ionization cone, as seen in the [O iii]λ5007 emission. The centroid of the [O i]λ6300 emission does not coincide with the AGN, being shifted by 0.24 arcsec towards the ionization cone; this shift is probably caused by a combination of differential dust extinction together with emission and reflection in the ionization cone. The optical spectra extracted from the central region are typical of low-ionization nuclear emission-line regions. We also identify 10 H ii regions, eight of them in a star-forming ring that is visible in Br γ, [Fe ii]λ16436, and molecular CO(3-2) images observed in previous studies. Such a ring also presents weak hard X-ray emission, probably associated with supernova remnants, not detected in other studies. The position of the AGN coincides with the centre of a nuclear spiral (detected in previous works) that brings gas and dust from the bar to the nucleus, causing the high extinction in this area. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/staa007 |