Loading…
Three mechanisms for bar thickening
ABSTRACT We present simulations of bar-unstable stellar discs in which the bars thicken into box/peanut shapes. Detailed analysis of the evolution of each model revealed three different mechanisms for thickening the bars. The first mechanism is the well-known buckling instability, the second is the...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2020-07, Vol.495 (3), p.3175-3191 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
We present simulations of bar-unstable stellar discs in which the bars thicken into box/peanut shapes. Detailed analysis of the evolution of each model revealed three different mechanisms for thickening the bars. The first mechanism is the well-known buckling instability, the second is the vertical excitation of bar orbits by passage through the 2:1 vertical resonance, and the third is a gradually increasing fraction of bar orbits trapped into this resonance. Since bars in many galaxies may have formed and thickened long ago, we have examined the models for fossil evidence in the velocity distribution of stars in the bar, finding a diagnostic to discriminate between a bar that had buckled from the other two mechanisms. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/staa1336 |