Loading…

Clumpiness: time-domain classification of red giant evolutionary states

ABSTRACT Long, high-quality time-series data provided by previous space missions such as CoRoT and Kepler have made it possible to derive the evolutionary state of red giant stars, i.e. whether the stars are hydrogen-shell burning around an inert helium core or helium-core burning, from their indivi...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2020-10, Vol.497 (4), p.4843-4856
Main Authors: Kuszlewicz, James S, Hekker, Saskia, Bell, Keaton J
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-6f3eaecad1953d81ffe867dcf9494b1ad737d034943344cabd9e283df9840bf83
cites cdi_FETCH-LOGICAL-c313t-6f3eaecad1953d81ffe867dcf9494b1ad737d034943344cabd9e283df9840bf83
container_end_page 4856
container_issue 4
container_start_page 4843
container_title Monthly notices of the Royal Astronomical Society
container_volume 497
creator Kuszlewicz, James S
Hekker, Saskia
Bell, Keaton J
description ABSTRACT Long, high-quality time-series data provided by previous space missions such as CoRoT and Kepler have made it possible to derive the evolutionary state of red giant stars, i.e. whether the stars are hydrogen-shell burning around an inert helium core or helium-core burning, from their individual oscillation modes. We utilize data from the Kepler mission to develop a tool to classify the evolutionary state for the large number of stars being observed in the current era of K2, TESS, and for the future PLATO mission. These missions provide new challenges for evolutionary state classification given the large number of stars being observed and the shorter observing duration of the data. We propose a new method, Clumpiness, based upon a supervised classification scheme that uses ‘summary statistics’ of the time series, combined with distance information from the Gaia mission to predict the evolutionary state. Applying this to red giants in the APOKASC catalogue, we obtain a classification accuracy of $\sim 91{{\ \rm per\ cent}}$ for the full 4 yr of Kepler data, for those stars that are either only hydrogen-shell burning or also helium-core burning. We also applied the method to shorter Kepler data sets, mimicking CoRoT, K2, and TESS achieving an accuracy $\gt 91{{\ \rm per\ cent}}$ even for the 27 d time series. This work paves the way towards fast, reliable classification of vast amounts of relatively short-time-span data with a few, well-engineered features.
doi_str_mv 10.1093/mnras/staa2155
format article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_staa2155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/staa2155</oup_id><sourcerecordid>10.1093/mnras/staa2155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-6f3eaecad1953d81ffe867dcf9494b1ad737d034943344cabd9e283df9840bf83</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK5ePefqIbtJJ20Tb1J0FRa86LlM8yGRfpG0gv-9XXc9e3rM472Z4UfIreAbwTVsuz5i2qYJMRN5fkZWAoqcZboozsmKc8iZKoW4JFcpfXLOJWTFiuyqdu7G0LuU7ukUOsfs0GHoqWkxpeCDwSkMPR08jc7Sj4D9RN3X0M4HG-M3XQ5OLl2TC49tcjcnXZP3p8e36pntX3cv1cOeGRAwscKDQ2fQCp2DVcJ7p4rSGq-llo1AW0JpOSwDgJQGG6tdpsB6rSRvvII12Rz3mjikFJ2vxxi65Y9a8PqAof7FUP9hWAp3x8Iwj_9lfwDYFGLK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Clumpiness: time-domain classification of red giant evolutionary states</title><source>EZB Electronic Journals Library</source><source>Oxford Open Access Journals</source><creator>Kuszlewicz, James S ; Hekker, Saskia ; Bell, Keaton J</creator><creatorcontrib>Kuszlewicz, James S ; Hekker, Saskia ; Bell, Keaton J</creatorcontrib><description>ABSTRACT Long, high-quality time-series data provided by previous space missions such as CoRoT and Kepler have made it possible to derive the evolutionary state of red giant stars, i.e. whether the stars are hydrogen-shell burning around an inert helium core or helium-core burning, from their individual oscillation modes. We utilize data from the Kepler mission to develop a tool to classify the evolutionary state for the large number of stars being observed in the current era of K2, TESS, and for the future PLATO mission. These missions provide new challenges for evolutionary state classification given the large number of stars being observed and the shorter observing duration of the data. We propose a new method, Clumpiness, based upon a supervised classification scheme that uses ‘summary statistics’ of the time series, combined with distance information from the Gaia mission to predict the evolutionary state. Applying this to red giants in the APOKASC catalogue, we obtain a classification accuracy of $\sim 91{{\ \rm per\ cent}}$ for the full 4 yr of Kepler data, for those stars that are either only hydrogen-shell burning or also helium-core burning. We also applied the method to shorter Kepler data sets, mimicking CoRoT, K2, and TESS achieving an accuracy $\gt 91{{\ \rm per\ cent}}$ even for the 27 d time series. This work paves the way towards fast, reliable classification of vast amounts of relatively short-time-span data with a few, well-engineered features.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/staa2155</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2020-10, Vol.497 (4), p.4843-4856</ispartof><rights>2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-6f3eaecad1953d81ffe867dcf9494b1ad737d034943344cabd9e283df9840bf83</citedby><cites>FETCH-LOGICAL-c313t-6f3eaecad1953d81ffe867dcf9494b1ad737d034943344cabd9e283df9840bf83</cites><orcidid>0000-0002-0656-032X ; 0000-0002-3322-5279 ; 0000-0002-1463-726X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kuszlewicz, James S</creatorcontrib><creatorcontrib>Hekker, Saskia</creatorcontrib><creatorcontrib>Bell, Keaton J</creatorcontrib><title>Clumpiness: time-domain classification of red giant evolutionary states</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT Long, high-quality time-series data provided by previous space missions such as CoRoT and Kepler have made it possible to derive the evolutionary state of red giant stars, i.e. whether the stars are hydrogen-shell burning around an inert helium core or helium-core burning, from their individual oscillation modes. We utilize data from the Kepler mission to develop a tool to classify the evolutionary state for the large number of stars being observed in the current era of K2, TESS, and for the future PLATO mission. These missions provide new challenges for evolutionary state classification given the large number of stars being observed and the shorter observing duration of the data. We propose a new method, Clumpiness, based upon a supervised classification scheme that uses ‘summary statistics’ of the time series, combined with distance information from the Gaia mission to predict the evolutionary state. Applying this to red giants in the APOKASC catalogue, we obtain a classification accuracy of $\sim 91{{\ \rm per\ cent}}$ for the full 4 yr of Kepler data, for those stars that are either only hydrogen-shell burning or also helium-core burning. We also applied the method to shorter Kepler data sets, mimicking CoRoT, K2, and TESS achieving an accuracy $\gt 91{{\ \rm per\ cent}}$ even for the 27 d time series. This work paves the way towards fast, reliable classification of vast amounts of relatively short-time-span data with a few, well-engineered features.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK5ePefqIbtJJ20Tb1J0FRa86LlM8yGRfpG0gv-9XXc9e3rM472Z4UfIreAbwTVsuz5i2qYJMRN5fkZWAoqcZboozsmKc8iZKoW4JFcpfXLOJWTFiuyqdu7G0LuU7ukUOsfs0GHoqWkxpeCDwSkMPR08jc7Sj4D9RN3X0M4HG-M3XQ5OLl2TC49tcjcnXZP3p8e36pntX3cv1cOeGRAwscKDQ2fQCp2DVcJ7p4rSGq-llo1AW0JpOSwDgJQGG6tdpsB6rSRvvII12Rz3mjikFJ2vxxi65Y9a8PqAof7FUP9hWAp3x8Iwj_9lfwDYFGLK</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Kuszlewicz, James S</creator><creator>Hekker, Saskia</creator><creator>Bell, Keaton J</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0656-032X</orcidid><orcidid>https://orcid.org/0000-0002-3322-5279</orcidid><orcidid>https://orcid.org/0000-0002-1463-726X</orcidid></search><sort><creationdate>20201001</creationdate><title>Clumpiness: time-domain classification of red giant evolutionary states</title><author>Kuszlewicz, James S ; Hekker, Saskia ; Bell, Keaton J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-6f3eaecad1953d81ffe867dcf9494b1ad737d034943344cabd9e283df9840bf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuszlewicz, James S</creatorcontrib><creatorcontrib>Hekker, Saskia</creatorcontrib><creatorcontrib>Bell, Keaton J</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuszlewicz, James S</au><au>Hekker, Saskia</au><au>Bell, Keaton J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clumpiness: time-domain classification of red giant evolutionary states</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>497</volume><issue>4</issue><spage>4843</spage><epage>4856</epage><pages>4843-4856</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT Long, high-quality time-series data provided by previous space missions such as CoRoT and Kepler have made it possible to derive the evolutionary state of red giant stars, i.e. whether the stars are hydrogen-shell burning around an inert helium core or helium-core burning, from their individual oscillation modes. We utilize data from the Kepler mission to develop a tool to classify the evolutionary state for the large number of stars being observed in the current era of K2, TESS, and for the future PLATO mission. These missions provide new challenges for evolutionary state classification given the large number of stars being observed and the shorter observing duration of the data. We propose a new method, Clumpiness, based upon a supervised classification scheme that uses ‘summary statistics’ of the time series, combined with distance information from the Gaia mission to predict the evolutionary state. Applying this to red giants in the APOKASC catalogue, we obtain a classification accuracy of $\sim 91{{\ \rm per\ cent}}$ for the full 4 yr of Kepler data, for those stars that are either only hydrogen-shell burning or also helium-core burning. We also applied the method to shorter Kepler data sets, mimicking CoRoT, K2, and TESS achieving an accuracy $\gt 91{{\ \rm per\ cent}}$ even for the 27 d time series. This work paves the way towards fast, reliable classification of vast amounts of relatively short-time-span data with a few, well-engineered features.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/staa2155</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0656-032X</orcidid><orcidid>https://orcid.org/0000-0002-3322-5279</orcidid><orcidid>https://orcid.org/0000-0002-1463-726X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2020-10, Vol.497 (4), p.4843-4856
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_staa2155
source EZB Electronic Journals Library; Oxford Open Access Journals
title Clumpiness: time-domain classification of red giant evolutionary states
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clumpiness:%20time-domain%20classification%20of%20red%20giant%20evolutionary%20states&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Kuszlewicz,%20James%20S&rft.date=2020-10-01&rft.volume=497&rft.issue=4&rft.spage=4843&rft.epage=4856&rft.pages=4843-4856&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/staa2155&rft_dat=%3Coup_cross%3E10.1093/mnras/staa2155%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-6f3eaecad1953d81ffe867dcf9494b1ad737d034943344cabd9e283df9840bf83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/staa2155&rfr_iscdi=true