Loading…
The GALAH survey: chemodynamics of the solar neighbourhood
ABSTRACT We present the chemodynamic structure of the solar neighbourhood using 55 652 stars within a 500 pc volume around the Sun observed by GALAH and with astrometric parameters from Gaia DR2. We measure the velocity dispersion for all three components (vertical, radial, and tangential) and find...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2020-04, Vol.493 (2), p.2952-2964 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
We present the chemodynamic structure of the solar neighbourhood using 55 652 stars within a 500 pc volume around the Sun observed by GALAH and with astrometric parameters from Gaia DR2. We measure the velocity dispersion for all three components (vertical, radial, and tangential) and find that it varies smoothly with [Fe/H] and [α/Fe] for each component. The vertical component is especially clean, with $\sigma _{v_z}$ increasing from a low of 10 km s−1 at solar [α/Fe] and [Fe/H] to a high of more than 50 km s−1 for more metal-poor and [α/Fe] enhanced populations. We find no evidence of a large decrease in the velocity dispersion of the highest [α/Fe] populations as claimed in surveys prior to Gaia DR2. The eccentricity distribution for local stars varies most strongly as a function of [α/Fe], where stars with [α/Fe] < 0.1 dex having generally circular orbits (e < 0.15), while the median eccentricity increases rapidly for more [α/Fe] enhanced stellar populations up to e ∼ 0.35. These [α/Fe] enhanced populations have guiding radii consistent with origins in the inner Galaxy. Of the stars with metallicities much higher than the local interstellar medium ([Fe/H] > 0.1 dex), we find that the majority have e < 0.2 and are likely observed in the solar neighbourhood through churning/migration rather than blurring effects, as the epicyclic motion for these stars is not large enough to reach the radii at which they were likely born based on their metallicity. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/staa335 |