Loading…

Properties of von Zeipel–Lidov–Kozai oscillations in triple systems at the quadrupole order: relaxing the test particle approximation

ABSTRACT Von Zeipel–Lidov–Kozai (ZLK) oscillations in hierarchical triple systems have important astrophysical implications such as triggering strong interactions and producing, e.g. Type Ia supernovae and gravitational wave sources. When considering analytic properties of ZLK oscillations at the lo...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2021-01, Vol.500 (3), p.3481-3496
Main Author: Hamers, Adrian S
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c273t-299df170bea591339b9364be4bb7af72a0233d363b21ae1a733e8e46f69b75d73
cites cdi_FETCH-LOGICAL-c273t-299df170bea591339b9364be4bb7af72a0233d363b21ae1a733e8e46f69b75d73
container_end_page 3496
container_issue 3
container_start_page 3481
container_title Monthly notices of the Royal Astronomical Society
container_volume 500
creator Hamers, Adrian S
description ABSTRACT Von Zeipel–Lidov–Kozai (ZLK) oscillations in hierarchical triple systems have important astrophysical implications such as triggering strong interactions and producing, e.g. Type Ia supernovae and gravitational wave sources. When considering analytic properties of ZLK oscillations at the lowest (quadrupole) expansion order, as well as complications due to higher order terms, one usually assumes the test particle limit, in which one of the bodies in the inner binary is massless. Although this approximation holds well for, e.g. planetary systems, it is less accurate for systems with more comparable masses such as stellar triples. Although non-test-particle effects are usually taken into account in numerical simulations, a more analytic approach focusing on the differences between the test particle and general case (at quadrupole order) has, to our knowledge, not been presented. Here, we derive several analytic properties of secular oscillations in triples at the quadruple expansion order. The latter applies even to relatively compact triples, as long as the inner bodies are similar in mass such that octupole-order effects are suppressed. We consider general conditions for the character of the oscillations (circular versus librating), minimum and maximum eccentricities, and time-scales, all as a function of $\gamma \equiv (1/2) \, L_1/G_2$, a ratio of inner-to-outer orbital angular momenta variables (γ = 0 in the test particle limit). In particular, eccentricity oscillations are more effective at retrograde orientations for non-zero γ; assuming zero initial inner eccentricity, the maximum eccentricity peaks at $\cos (i_{\mathrm{rel},0}) = -\gamma$, where $i_{\mathrm{rel},0}$ is the initial relative inclination. We provide a python script that can be used to quickly compute these properties.
doi_str_mv 10.1093/mnras/staa3498
format article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_staa3498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/staa3498</oup_id><sourcerecordid>10.1093/mnras/staa3498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-299df170bea591339b9364be4bb7af72a0233d363b21ae1a733e8e46f69b75d73</originalsourceid><addsrcrecordid>eNqFULtOwzAUtRBIlMLK7JUhrZ2b2DUbqniJSjDAwhI5yQ0YpbGx3aplYmXmD_kSQgsz0xnO495zCDnmbMSZgvG88zqMQ9QaMjXZIQMOIk9SJcQuGTAGeTKRnO-TgxBeGGMZpGJAPu68deijwUBtQ5e2o49oHLZf758zU9tljzf2TRtqQ2XaVkdju0BNR6M3rkUa1iHiPFAdaXxG-rrQtV842zPW1-hPqcdWr0z3tKEjhkid7u9VvUI75-3KzDehh2Sv0W3Ao18ckoeL8_vpVTK7vbyens2SKpUQ-z6qbrhkJepccQBVKhBZiVlZSt3IVLMUoAYBZco1ci0BcIKZaIQqZV5LGJLRNrfyNgSPTeF8_4JfF5wVP0MWmyGLvyF7w8nWYBfuP-031FV9Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Properties of von Zeipel–Lidov–Kozai oscillations in triple systems at the quadrupole order: relaxing the test particle approximation</title><source>Open Access: Oxford University Press Open Journals</source><creator>Hamers, Adrian S</creator><creatorcontrib>Hamers, Adrian S</creatorcontrib><description>ABSTRACT Von Zeipel–Lidov–Kozai (ZLK) oscillations in hierarchical triple systems have important astrophysical implications such as triggering strong interactions and producing, e.g. Type Ia supernovae and gravitational wave sources. When considering analytic properties of ZLK oscillations at the lowest (quadrupole) expansion order, as well as complications due to higher order terms, one usually assumes the test particle limit, in which one of the bodies in the inner binary is massless. Although this approximation holds well for, e.g. planetary systems, it is less accurate for systems with more comparable masses such as stellar triples. Although non-test-particle effects are usually taken into account in numerical simulations, a more analytic approach focusing on the differences between the test particle and general case (at quadrupole order) has, to our knowledge, not been presented. Here, we derive several analytic properties of secular oscillations in triples at the quadruple expansion order. The latter applies even to relatively compact triples, as long as the inner bodies are similar in mass such that octupole-order effects are suppressed. We consider general conditions for the character of the oscillations (circular versus librating), minimum and maximum eccentricities, and time-scales, all as a function of $\gamma \equiv (1/2) \, L_1/G_2$, a ratio of inner-to-outer orbital angular momenta variables (γ = 0 in the test particle limit). In particular, eccentricity oscillations are more effective at retrograde orientations for non-zero γ; assuming zero initial inner eccentricity, the maximum eccentricity peaks at $\cos (i_{\mathrm{rel},0}) = -\gamma$, where $i_{\mathrm{rel},0}$ is the initial relative inclination. We provide a python script that can be used to quickly compute these properties.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/staa3498</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2021-01, Vol.500 (3), p.3481-3496</ispartof><rights>2020 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-299df170bea591339b9364be4bb7af72a0233d363b21ae1a733e8e46f69b75d73</citedby><cites>FETCH-LOGICAL-c273t-299df170bea591339b9364be4bb7af72a0233d363b21ae1a733e8e46f69b75d73</cites><orcidid>0000-0003-1004-5635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27900,27901</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/staa3498$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Hamers, Adrian S</creatorcontrib><title>Properties of von Zeipel–Lidov–Kozai oscillations in triple systems at the quadrupole order: relaxing the test particle approximation</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT Von Zeipel–Lidov–Kozai (ZLK) oscillations in hierarchical triple systems have important astrophysical implications such as triggering strong interactions and producing, e.g. Type Ia supernovae and gravitational wave sources. When considering analytic properties of ZLK oscillations at the lowest (quadrupole) expansion order, as well as complications due to higher order terms, one usually assumes the test particle limit, in which one of the bodies in the inner binary is massless. Although this approximation holds well for, e.g. planetary systems, it is less accurate for systems with more comparable masses such as stellar triples. Although non-test-particle effects are usually taken into account in numerical simulations, a more analytic approach focusing on the differences between the test particle and general case (at quadrupole order) has, to our knowledge, not been presented. Here, we derive several analytic properties of secular oscillations in triples at the quadruple expansion order. The latter applies even to relatively compact triples, as long as the inner bodies are similar in mass such that octupole-order effects are suppressed. We consider general conditions for the character of the oscillations (circular versus librating), minimum and maximum eccentricities, and time-scales, all as a function of $\gamma \equiv (1/2) \, L_1/G_2$, a ratio of inner-to-outer orbital angular momenta variables (γ = 0 in the test particle limit). In particular, eccentricity oscillations are more effective at retrograde orientations for non-zero γ; assuming zero initial inner eccentricity, the maximum eccentricity peaks at $\cos (i_{\mathrm{rel},0}) = -\gamma$, where $i_{\mathrm{rel},0}$ is the initial relative inclination. We provide a python script that can be used to quickly compute these properties.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFULtOwzAUtRBIlMLK7JUhrZ2b2DUbqniJSjDAwhI5yQ0YpbGx3aplYmXmD_kSQgsz0xnO495zCDnmbMSZgvG88zqMQ9QaMjXZIQMOIk9SJcQuGTAGeTKRnO-TgxBeGGMZpGJAPu68deijwUBtQ5e2o49oHLZf758zU9tljzf2TRtqQ2XaVkdju0BNR6M3rkUa1iHiPFAdaXxG-rrQtV842zPW1-hPqcdWr0z3tKEjhkid7u9VvUI75-3KzDehh2Sv0W3Ao18ckoeL8_vpVTK7vbyens2SKpUQ-z6qbrhkJepccQBVKhBZiVlZSt3IVLMUoAYBZco1ci0BcIKZaIQqZV5LGJLRNrfyNgSPTeF8_4JfF5wVP0MWmyGLvyF7w8nWYBfuP-031FV9Mg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Hamers, Adrian S</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1004-5635</orcidid></search><sort><creationdate>20210101</creationdate><title>Properties of von Zeipel–Lidov–Kozai oscillations in triple systems at the quadrupole order: relaxing the test particle approximation</title><author>Hamers, Adrian S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-299df170bea591339b9364be4bb7af72a0233d363b21ae1a733e8e46f69b75d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamers, Adrian S</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hamers, Adrian S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties of von Zeipel–Lidov–Kozai oscillations in triple systems at the quadrupole order: relaxing the test particle approximation</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>500</volume><issue>3</issue><spage>3481</spage><epage>3496</epage><pages>3481-3496</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT Von Zeipel–Lidov–Kozai (ZLK) oscillations in hierarchical triple systems have important astrophysical implications such as triggering strong interactions and producing, e.g. Type Ia supernovae and gravitational wave sources. When considering analytic properties of ZLK oscillations at the lowest (quadrupole) expansion order, as well as complications due to higher order terms, one usually assumes the test particle limit, in which one of the bodies in the inner binary is massless. Although this approximation holds well for, e.g. planetary systems, it is less accurate for systems with more comparable masses such as stellar triples. Although non-test-particle effects are usually taken into account in numerical simulations, a more analytic approach focusing on the differences between the test particle and general case (at quadrupole order) has, to our knowledge, not been presented. Here, we derive several analytic properties of secular oscillations in triples at the quadruple expansion order. The latter applies even to relatively compact triples, as long as the inner bodies are similar in mass such that octupole-order effects are suppressed. We consider general conditions for the character of the oscillations (circular versus librating), minimum and maximum eccentricities, and time-scales, all as a function of $\gamma \equiv (1/2) \, L_1/G_2$, a ratio of inner-to-outer orbital angular momenta variables (γ = 0 in the test particle limit). In particular, eccentricity oscillations are more effective at retrograde orientations for non-zero γ; assuming zero initial inner eccentricity, the maximum eccentricity peaks at $\cos (i_{\mathrm{rel},0}) = -\gamma$, where $i_{\mathrm{rel},0}$ is the initial relative inclination. We provide a python script that can be used to quickly compute these properties.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/staa3498</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1004-5635</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2021-01, Vol.500 (3), p.3481-3496
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_staa3498
source Open Access: Oxford University Press Open Journals
title Properties of von Zeipel–Lidov–Kozai oscillations in triple systems at the quadrupole order: relaxing the test particle approximation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T13%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20of%20von%20Zeipel%E2%80%93Lidov%E2%80%93Kozai%20oscillations%20in%20triple%20systems%20at%20the%20quadrupole%20order:%20relaxing%20the%20test%20particle%20approximation&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Hamers,%20Adrian%20S&rft.date=2021-01-01&rft.volume=500&rft.issue=3&rft.spage=3481&rft.epage=3496&rft.pages=3481-3496&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/staa3498&rft_dat=%3Coup_TOX%3E10.1093/mnras/staa3498%3C/oup_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-299df170bea591339b9364be4bb7af72a0233d363b21ae1a733e8e46f69b75d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/staa3498&rfr_iscdi=true