Loading…

SMA observations of Haro 2: molecular gas around a hot superbubble

ABSTRACT Haro 2, a nearby dwarf starburst dwarf galaxy with strong Ly α emission, hosts a starburst that has created outflows and filaments. The clear evidence for galactic outflow makes it an ideal candidate for studying the role of molecular gas in feedback processes in a dwarf galaxy. We observed...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2020-05, Vol.494 (1), p.1-9
Main Authors: Beck, Sara C, Hsieh, Pei-Ying, Turner, Jean
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Haro 2, a nearby dwarf starburst dwarf galaxy with strong Ly α emission, hosts a starburst that has created outflows and filaments. The clear evidence for galactic outflow makes it an ideal candidate for studying the role of molecular gas in feedback processes in a dwarf galaxy. We observed CO(2–1) in Haro 2 at the Submillimeter Array in the compact and extended configurations, and have mapped the molecular emission with velocity resolution 4.1 km s−1 and spatial resolution 2.0 × 1.6 arcsec2. With this significant increase of resolution over previous measurements, we see that the molecular gas comprises two components: bright clumps associated with the embedded star clusters of the starburst, and fainter extended emission east of the starburst region. The extended emission coincides with an X-ray bubble and has the kinematic signatures of an outflowing cone or of an expanding shell or bubble; the velocity range is ∼35 km s−1. We suggest that the starburst winds that created the X-ray bubble have entrained the molecular gas, and that the apparent velocity gradient at an angle to the photometric axis is an artefact caused by the outflow. The molecular and X-ray activity is on the east of the galaxy and the ionized outflow and optical filaments are west; their relationship is not clear.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/staa660