Loading…

Test of the cosmic distance duality relation for arbitrary spatial curvature

ABSTRACT The cosmic distance duality relation (CDDR), η(z) = (1 + z)2dA(z)/dL(z) = 1, is one of the most fundamental and crucial formulae in cosmology. This relation couples the luminosity and angular diameter distances, two of the most often used measures of structure in the Universe. We here propo...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2021-04, Vol.502 (3), p.3500-3509
Main Authors: Qin, Jin, Melia, Fulvio, Zhang, Tong-Jie
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c270t-c0b6078afaced8f4ec69df9f8055438956a64747321db59c6b095c72b409ac023
cites cdi_FETCH-LOGICAL-c270t-c0b6078afaced8f4ec69df9f8055438956a64747321db59c6b095c72b409ac023
container_end_page 3509
container_issue 3
container_start_page 3500
container_title Monthly notices of the Royal Astronomical Society
container_volume 502
creator Qin, Jin
Melia, Fulvio
Zhang, Tong-Jie
description ABSTRACT The cosmic distance duality relation (CDDR), η(z) = (1 + z)2dA(z)/dL(z) = 1, is one of the most fundamental and crucial formulae in cosmology. This relation couples the luminosity and angular diameter distances, two of the most often used measures of structure in the Universe. We here propose a new model-independent method to test this relation, using strong gravitational lensing (SGL) and the high-redshift quasar Hubble diagram reconstructed with a Bézier parametric fit. We carry out this test without pre-assuming a zero spatial curvature, adopting instead the value ΩK = 0.001 ± 0.002 optimized by Planck in order to improve the reliability of our result. We parametrize the CDDR using η(z) = 1 + η0z, 1 + η1z + η2z2, and 1 + η3z/(1 + z), and consider both the SIS and non-SIS lens models for the strong lensing. Our best-fitting results are: $\eta _0=-0.021^{+0.068}_{-0.048}$, $\eta _1=-0.404^{+0.123}_{-0.090}$, $\eta _2=0.106^{+0.028}_{-0.034}$, and $\eta _3=-0.507^{+0.193}_{-0.133}$ for the SIS model, and $\eta _0=-0.109^{+0.044}_{-0.031}$ for the non-SIS model. The measured η(z), based on the Planck parameter ΩK, is essentially consistent with the value (=1) expected if the CDDR were fully respected. For the sake of comparison, we also carry out the test for other values of ΩK, but find that deviations of spatial flatness beyond the Planck optimization are in even greater tension with the CDDR. Future measurements of SGL may improve the statistics and alter this result but, as of now, we conclude that the CDDR favours a flat Universe.
doi_str_mv 10.1093/mnras/stab124
format article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stab124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stab124</oup_id><sourcerecordid>10.1093/mnras/stab124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-c0b6078afaced8f4ec69df9f8055438956a64747321db59c6b095c72b409ac023</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoWEeX7rN0U-fm2WYpgzpCwc24LrdpgpW-SFJh_r3Vmb2rA4ePw-Ej5J7BIwMjtsMYMG5jwoZxeUEyJrTKudH6kmQAQuVlwdg1uYnxCwCk4Doj1cHFRCdP06ejdopDZ2nbrRujdbRdsO_SkQbXY-qmkfopUAxNlwKGI43z2mJP7RK-MS3B3ZIrj310d-fckI-X58Nun1fvr2-7pyq3vICUW2g0FCV6tK4tvXRWm9YbX4JSUpRGadSykIXgrG2UsboBo2zBGwkGLXCxIflp14YpxuB8PYduWC_VDOpfFfWfivqsYuUfTvy0zP-gP4QJYx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Test of the cosmic distance duality relation for arbitrary spatial curvature</title><source>Open Access: Oxford University Press Open Journals</source><creator>Qin, Jin ; Melia, Fulvio ; Zhang, Tong-Jie</creator><creatorcontrib>Qin, Jin ; Melia, Fulvio ; Zhang, Tong-Jie</creatorcontrib><description>ABSTRACT The cosmic distance duality relation (CDDR), η(z) = (1 + z)2dA(z)/dL(z) = 1, is one of the most fundamental and crucial formulae in cosmology. This relation couples the luminosity and angular diameter distances, two of the most often used measures of structure in the Universe. We here propose a new model-independent method to test this relation, using strong gravitational lensing (SGL) and the high-redshift quasar Hubble diagram reconstructed with a Bézier parametric fit. We carry out this test without pre-assuming a zero spatial curvature, adopting instead the value ΩK = 0.001 ± 0.002 optimized by Planck in order to improve the reliability of our result. We parametrize the CDDR using η(z) = 1 + η0z, 1 + η1z + η2z2, and 1 + η3z/(1 + z), and consider both the SIS and non-SIS lens models for the strong lensing. Our best-fitting results are: $\eta _0=-0.021^{+0.068}_{-0.048}$, $\eta _1=-0.404^{+0.123}_{-0.090}$, $\eta _2=0.106^{+0.028}_{-0.034}$, and $\eta _3=-0.507^{+0.193}_{-0.133}$ for the SIS model, and $\eta _0=-0.109^{+0.044}_{-0.031}$ for the non-SIS model. The measured η(z), based on the Planck parameter ΩK, is essentially consistent with the value (=1) expected if the CDDR were fully respected. For the sake of comparison, we also carry out the test for other values of ΩK, but find that deviations of spatial flatness beyond the Planck optimization are in even greater tension with the CDDR. Future measurements of SGL may improve the statistics and alter this result but, as of now, we conclude that the CDDR favours a flat Universe.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stab124</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2021-04, Vol.502 (3), p.3500-3509</ispartof><rights>2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-c0b6078afaced8f4ec69df9f8055438956a64747321db59c6b095c72b409ac023</citedby><cites>FETCH-LOGICAL-c270t-c0b6078afaced8f4ec69df9f8055438956a64747321db59c6b095c72b409ac023</cites><orcidid>0000-0002-8014-0593 ; 0000-0003-0167-9345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stab124$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Qin, Jin</creatorcontrib><creatorcontrib>Melia, Fulvio</creatorcontrib><creatorcontrib>Zhang, Tong-Jie</creatorcontrib><title>Test of the cosmic distance duality relation for arbitrary spatial curvature</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT The cosmic distance duality relation (CDDR), η(z) = (1 + z)2dA(z)/dL(z) = 1, is one of the most fundamental and crucial formulae in cosmology. This relation couples the luminosity and angular diameter distances, two of the most often used measures of structure in the Universe. We here propose a new model-independent method to test this relation, using strong gravitational lensing (SGL) and the high-redshift quasar Hubble diagram reconstructed with a Bézier parametric fit. We carry out this test without pre-assuming a zero spatial curvature, adopting instead the value ΩK = 0.001 ± 0.002 optimized by Planck in order to improve the reliability of our result. We parametrize the CDDR using η(z) = 1 + η0z, 1 + η1z + η2z2, and 1 + η3z/(1 + z), and consider both the SIS and non-SIS lens models for the strong lensing. Our best-fitting results are: $\eta _0=-0.021^{+0.068}_{-0.048}$, $\eta _1=-0.404^{+0.123}_{-0.090}$, $\eta _2=0.106^{+0.028}_{-0.034}$, and $\eta _3=-0.507^{+0.193}_{-0.133}$ for the SIS model, and $\eta _0=-0.109^{+0.044}_{-0.031}$ for the non-SIS model. The measured η(z), based on the Planck parameter ΩK, is essentially consistent with the value (=1) expected if the CDDR were fully respected. For the sake of comparison, we also carry out the test for other values of ΩK, but find that deviations of spatial flatness beyond the Planck optimization are in even greater tension with the CDDR. Future measurements of SGL may improve the statistics and alter this result but, as of now, we conclude that the CDDR favours a flat Universe.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoWEeX7rN0U-fm2WYpgzpCwc24LrdpgpW-SFJh_r3Vmb2rA4ePw-Ej5J7BIwMjtsMYMG5jwoZxeUEyJrTKudH6kmQAQuVlwdg1uYnxCwCk4Doj1cHFRCdP06ejdopDZ2nbrRujdbRdsO_SkQbXY-qmkfopUAxNlwKGI43z2mJP7RK-MS3B3ZIrj310d-fckI-X58Nun1fvr2-7pyq3vICUW2g0FCV6tK4tvXRWm9YbX4JSUpRGadSykIXgrG2UsboBo2zBGwkGLXCxIflp14YpxuB8PYduWC_VDOpfFfWfivqsYuUfTvy0zP-gP4QJYx4</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Qin, Jin</creator><creator>Melia, Fulvio</creator><creator>Zhang, Tong-Jie</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8014-0593</orcidid><orcidid>https://orcid.org/0000-0003-0167-9345</orcidid></search><sort><creationdate>20210401</creationdate><title>Test of the cosmic distance duality relation for arbitrary spatial curvature</title><author>Qin, Jin ; Melia, Fulvio ; Zhang, Tong-Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-c0b6078afaced8f4ec69df9f8055438956a64747321db59c6b095c72b409ac023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Jin</creatorcontrib><creatorcontrib>Melia, Fulvio</creatorcontrib><creatorcontrib>Zhang, Tong-Jie</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qin, Jin</au><au>Melia, Fulvio</au><au>Zhang, Tong-Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Test of the cosmic distance duality relation for arbitrary spatial curvature</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>502</volume><issue>3</issue><spage>3500</spage><epage>3509</epage><pages>3500-3509</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT The cosmic distance duality relation (CDDR), η(z) = (1 + z)2dA(z)/dL(z) = 1, is one of the most fundamental and crucial formulae in cosmology. This relation couples the luminosity and angular diameter distances, two of the most often used measures of structure in the Universe. We here propose a new model-independent method to test this relation, using strong gravitational lensing (SGL) and the high-redshift quasar Hubble diagram reconstructed with a Bézier parametric fit. We carry out this test without pre-assuming a zero spatial curvature, adopting instead the value ΩK = 0.001 ± 0.002 optimized by Planck in order to improve the reliability of our result. We parametrize the CDDR using η(z) = 1 + η0z, 1 + η1z + η2z2, and 1 + η3z/(1 + z), and consider both the SIS and non-SIS lens models for the strong lensing. Our best-fitting results are: $\eta _0=-0.021^{+0.068}_{-0.048}$, $\eta _1=-0.404^{+0.123}_{-0.090}$, $\eta _2=0.106^{+0.028}_{-0.034}$, and $\eta _3=-0.507^{+0.193}_{-0.133}$ for the SIS model, and $\eta _0=-0.109^{+0.044}_{-0.031}$ for the non-SIS model. The measured η(z), based on the Planck parameter ΩK, is essentially consistent with the value (=1) expected if the CDDR were fully respected. For the sake of comparison, we also carry out the test for other values of ΩK, but find that deviations of spatial flatness beyond the Planck optimization are in even greater tension with the CDDR. Future measurements of SGL may improve the statistics and alter this result but, as of now, we conclude that the CDDR favours a flat Universe.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stab124</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8014-0593</orcidid><orcidid>https://orcid.org/0000-0003-0167-9345</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2021-04, Vol.502 (3), p.3500-3509
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stab124
source Open Access: Oxford University Press Open Journals
title Test of the cosmic distance duality relation for arbitrary spatial curvature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Test%20of%20the%20cosmic%20distance%20duality%20relation%20for%20arbitrary%20spatial%20curvature&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Qin,%20Jin&rft.date=2021-04-01&rft.volume=502&rft.issue=3&rft.spage=3500&rft.epage=3509&rft.pages=3500-3509&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stab124&rft_dat=%3Coup_TOX%3E10.1093/mnras/stab124%3C/oup_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-c0b6078afaced8f4ec69df9f8055438956a64747321db59c6b095c72b409ac023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stab124&rfr_iscdi=true