Loading…
Test of the cosmic distance duality relation for arbitrary spatial curvature
ABSTRACT The cosmic distance duality relation (CDDR), η(z) = (1 + z)2dA(z)/dL(z) = 1, is one of the most fundamental and crucial formulae in cosmology. This relation couples the luminosity and angular diameter distances, two of the most often used measures of structure in the Universe. We here propo...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2021-04, Vol.502 (3), p.3500-3509 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c270t-c0b6078afaced8f4ec69df9f8055438956a64747321db59c6b095c72b409ac023 |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-c0b6078afaced8f4ec69df9f8055438956a64747321db59c6b095c72b409ac023 |
container_end_page | 3509 |
container_issue | 3 |
container_start_page | 3500 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 502 |
creator | Qin, Jin Melia, Fulvio Zhang, Tong-Jie |
description | ABSTRACT
The cosmic distance duality relation (CDDR), η(z) = (1 + z)2dA(z)/dL(z) = 1, is one of the most fundamental and crucial formulae in cosmology. This relation couples the luminosity and angular diameter distances, two of the most often used measures of structure in the Universe. We here propose a new model-independent method to test this relation, using strong gravitational lensing (SGL) and the high-redshift quasar Hubble diagram reconstructed with a Bézier parametric fit. We carry out this test without pre-assuming a zero spatial curvature, adopting instead the value ΩK = 0.001 ± 0.002 optimized by Planck in order to improve the reliability of our result. We parametrize the CDDR using η(z) = 1 + η0z, 1 + η1z + η2z2, and 1 + η3z/(1 + z), and consider both the SIS and non-SIS lens models for the strong lensing. Our best-fitting results are: $\eta _0=-0.021^{+0.068}_{-0.048}$, $\eta _1=-0.404^{+0.123}_{-0.090}$, $\eta _2=0.106^{+0.028}_{-0.034}$, and $\eta _3=-0.507^{+0.193}_{-0.133}$ for the SIS model, and $\eta _0=-0.109^{+0.044}_{-0.031}$ for the non-SIS model. The measured η(z), based on the Planck parameter ΩK, is essentially consistent with the value (=1) expected if the CDDR were fully respected. For the sake of comparison, we also carry out the test for other values of ΩK, but find that deviations of spatial flatness beyond the Planck optimization are in even greater tension with the CDDR. Future measurements of SGL may improve the statistics and alter this result but, as of now, we conclude that the CDDR favours a flat Universe. |
doi_str_mv | 10.1093/mnras/stab124 |
format | article |
fullrecord | <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stab124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stab124</oup_id><sourcerecordid>10.1093/mnras/stab124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-c0b6078afaced8f4ec69df9f8055438956a64747321db59c6b095c72b409ac023</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoWEeX7rN0U-fm2WYpgzpCwc24LrdpgpW-SFJh_r3Vmb2rA4ePw-Ej5J7BIwMjtsMYMG5jwoZxeUEyJrTKudH6kmQAQuVlwdg1uYnxCwCk4Doj1cHFRCdP06ejdopDZ2nbrRujdbRdsO_SkQbXY-qmkfopUAxNlwKGI43z2mJP7RK-MS3B3ZIrj310d-fckI-X58Nun1fvr2-7pyq3vICUW2g0FCV6tK4tvXRWm9YbX4JSUpRGadSykIXgrG2UsboBo2zBGwkGLXCxIflp14YpxuB8PYduWC_VDOpfFfWfivqsYuUfTvy0zP-gP4QJYx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Test of the cosmic distance duality relation for arbitrary spatial curvature</title><source>Open Access: Oxford University Press Open Journals</source><creator>Qin, Jin ; Melia, Fulvio ; Zhang, Tong-Jie</creator><creatorcontrib>Qin, Jin ; Melia, Fulvio ; Zhang, Tong-Jie</creatorcontrib><description>ABSTRACT
The cosmic distance duality relation (CDDR), η(z) = (1 + z)2dA(z)/dL(z) = 1, is one of the most fundamental and crucial formulae in cosmology. This relation couples the luminosity and angular diameter distances, two of the most often used measures of structure in the Universe. We here propose a new model-independent method to test this relation, using strong gravitational lensing (SGL) and the high-redshift quasar Hubble diagram reconstructed with a Bézier parametric fit. We carry out this test without pre-assuming a zero spatial curvature, adopting instead the value ΩK = 0.001 ± 0.002 optimized by Planck in order to improve the reliability of our result. We parametrize the CDDR using η(z) = 1 + η0z, 1 + η1z + η2z2, and 1 + η3z/(1 + z), and consider both the SIS and non-SIS lens models for the strong lensing. Our best-fitting results are: $\eta _0=-0.021^{+0.068}_{-0.048}$, $\eta _1=-0.404^{+0.123}_{-0.090}$, $\eta _2=0.106^{+0.028}_{-0.034}$, and $\eta _3=-0.507^{+0.193}_{-0.133}$ for the SIS model, and $\eta _0=-0.109^{+0.044}_{-0.031}$ for the non-SIS model. The measured η(z), based on the Planck parameter ΩK, is essentially consistent with the value (=1) expected if the CDDR were fully respected. For the sake of comparison, we also carry out the test for other values of ΩK, but find that deviations of spatial flatness beyond the Planck optimization are in even greater tension with the CDDR. Future measurements of SGL may improve the statistics and alter this result but, as of now, we conclude that the CDDR favours a flat Universe.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stab124</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2021-04, Vol.502 (3), p.3500-3509</ispartof><rights>2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-c0b6078afaced8f4ec69df9f8055438956a64747321db59c6b095c72b409ac023</citedby><cites>FETCH-LOGICAL-c270t-c0b6078afaced8f4ec69df9f8055438956a64747321db59c6b095c72b409ac023</cites><orcidid>0000-0002-8014-0593 ; 0000-0003-0167-9345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stab124$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Qin, Jin</creatorcontrib><creatorcontrib>Melia, Fulvio</creatorcontrib><creatorcontrib>Zhang, Tong-Jie</creatorcontrib><title>Test of the cosmic distance duality relation for arbitrary spatial curvature</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT
The cosmic distance duality relation (CDDR), η(z) = (1 + z)2dA(z)/dL(z) = 1, is one of the most fundamental and crucial formulae in cosmology. This relation couples the luminosity and angular diameter distances, two of the most often used measures of structure in the Universe. We here propose a new model-independent method to test this relation, using strong gravitational lensing (SGL) and the high-redshift quasar Hubble diagram reconstructed with a Bézier parametric fit. We carry out this test without pre-assuming a zero spatial curvature, adopting instead the value ΩK = 0.001 ± 0.002 optimized by Planck in order to improve the reliability of our result. We parametrize the CDDR using η(z) = 1 + η0z, 1 + η1z + η2z2, and 1 + η3z/(1 + z), and consider both the SIS and non-SIS lens models for the strong lensing. Our best-fitting results are: $\eta _0=-0.021^{+0.068}_{-0.048}$, $\eta _1=-0.404^{+0.123}_{-0.090}$, $\eta _2=0.106^{+0.028}_{-0.034}$, and $\eta _3=-0.507^{+0.193}_{-0.133}$ for the SIS model, and $\eta _0=-0.109^{+0.044}_{-0.031}$ for the non-SIS model. The measured η(z), based on the Planck parameter ΩK, is essentially consistent with the value (=1) expected if the CDDR were fully respected. For the sake of comparison, we also carry out the test for other values of ΩK, but find that deviations of spatial flatness beyond the Planck optimization are in even greater tension with the CDDR. Future measurements of SGL may improve the statistics and alter this result but, as of now, we conclude that the CDDR favours a flat Universe.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoWEeX7rN0U-fm2WYpgzpCwc24LrdpgpW-SFJh_r3Vmb2rA4ePw-Ej5J7BIwMjtsMYMG5jwoZxeUEyJrTKudH6kmQAQuVlwdg1uYnxCwCk4Doj1cHFRCdP06ejdopDZ2nbrRujdbRdsO_SkQbXY-qmkfopUAxNlwKGI43z2mJP7RK-MS3B3ZIrj310d-fckI-X58Nun1fvr2-7pyq3vICUW2g0FCV6tK4tvXRWm9YbX4JSUpRGadSykIXgrG2UsboBo2zBGwkGLXCxIflp14YpxuB8PYduWC_VDOpfFfWfivqsYuUfTvy0zP-gP4QJYx4</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Qin, Jin</creator><creator>Melia, Fulvio</creator><creator>Zhang, Tong-Jie</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8014-0593</orcidid><orcidid>https://orcid.org/0000-0003-0167-9345</orcidid></search><sort><creationdate>20210401</creationdate><title>Test of the cosmic distance duality relation for arbitrary spatial curvature</title><author>Qin, Jin ; Melia, Fulvio ; Zhang, Tong-Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-c0b6078afaced8f4ec69df9f8055438956a64747321db59c6b095c72b409ac023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Jin</creatorcontrib><creatorcontrib>Melia, Fulvio</creatorcontrib><creatorcontrib>Zhang, Tong-Jie</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qin, Jin</au><au>Melia, Fulvio</au><au>Zhang, Tong-Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Test of the cosmic distance duality relation for arbitrary spatial curvature</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>502</volume><issue>3</issue><spage>3500</spage><epage>3509</epage><pages>3500-3509</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT
The cosmic distance duality relation (CDDR), η(z) = (1 + z)2dA(z)/dL(z) = 1, is one of the most fundamental and crucial formulae in cosmology. This relation couples the luminosity and angular diameter distances, two of the most often used measures of structure in the Universe. We here propose a new model-independent method to test this relation, using strong gravitational lensing (SGL) and the high-redshift quasar Hubble diagram reconstructed with a Bézier parametric fit. We carry out this test without pre-assuming a zero spatial curvature, adopting instead the value ΩK = 0.001 ± 0.002 optimized by Planck in order to improve the reliability of our result. We parametrize the CDDR using η(z) = 1 + η0z, 1 + η1z + η2z2, and 1 + η3z/(1 + z), and consider both the SIS and non-SIS lens models for the strong lensing. Our best-fitting results are: $\eta _0=-0.021^{+0.068}_{-0.048}$, $\eta _1=-0.404^{+0.123}_{-0.090}$, $\eta _2=0.106^{+0.028}_{-0.034}$, and $\eta _3=-0.507^{+0.193}_{-0.133}$ for the SIS model, and $\eta _0=-0.109^{+0.044}_{-0.031}$ for the non-SIS model. The measured η(z), based on the Planck parameter ΩK, is essentially consistent with the value (=1) expected if the CDDR were fully respected. For the sake of comparison, we also carry out the test for other values of ΩK, but find that deviations of spatial flatness beyond the Planck optimization are in even greater tension with the CDDR. Future measurements of SGL may improve the statistics and alter this result but, as of now, we conclude that the CDDR favours a flat Universe.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stab124</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8014-0593</orcidid><orcidid>https://orcid.org/0000-0003-0167-9345</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2021-04, Vol.502 (3), p.3500-3509 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_crossref_primary_10_1093_mnras_stab124 |
source | Open Access: Oxford University Press Open Journals |
title | Test of the cosmic distance duality relation for arbitrary spatial curvature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Test%20of%20the%20cosmic%20distance%20duality%20relation%20for%20arbitrary%20spatial%20curvature&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Qin,%20Jin&rft.date=2021-04-01&rft.volume=502&rft.issue=3&rft.spage=3500&rft.epage=3509&rft.pages=3500-3509&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stab124&rft_dat=%3Coup_TOX%3E10.1093/mnras/stab124%3C/oup_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-c0b6078afaced8f4ec69df9f8055438956a64747321db59c6b095c72b409ac023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stab124&rfr_iscdi=true |