Loading…
3D core kinematics of NGC 6362: central rotation in a dynamically evolved globular cluster
We present a detailed 3D kinematic analysis of the central regions (R < 30 arcsec) of the low mass and dynamically evolved galactic globular cluster (GC) NGC 6362. The study is based on data obtained with ESO-VLT/MUSE used in combination with the adaptive optics module and providing ∼3000 line-of...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2021-09, Vol.506 (1), p.813-823 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a detailed 3D kinematic analysis of the central regions (R < 30 arcsec) of the low mass and dynamically evolved galactic globular cluster (GC) NGC 6362. The study is based on data obtained with ESO-VLT/MUSE used in combination with the adaptive optics module and providing ∼3000 line-of-sight radial velocities, which have been complemented with Hubble Space Telescope proper motions. The quality of the data and the number of available radial velocities allowed us to detect for the first time a significant rotation signal along the line of sight in the cluster core with amplitude of ∼1 km s−1 and with a peak located at only ∼20 arcsec from the cluster centre, corresponding to only ${\sim}10{{\ \rm per\ cent}}$ of the cluster half-light radius. This result is further supported by the detection of a central and significant tangential anisotropy in the cluster innermost regions. This is one of the most central rotation signals ever observed in a GC to date. We also explore the rotational properties of the multiple populations hosted by this cluster and find that Na-rich stars rotate about two times more rapidly than the Na-poor sub-population thus suggesting that the interpretation of the present-day GC properties require a multicomponent chemo-dynamical approach. Both the rotation amplitude and peak position would fit qualitatively the theoretical expectations for a system that lost a significant fraction of its original mass because of the long-term dynamical evolution and interaction with the Galaxy. However, to match the observations more quantitatively further theoretical studies to explore the initial dynamical properties of the cluster are needed. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stab1257 |