Loading…

The redshift evolution of the baryonic Tully–Fisher relation in SIMBA

ABSTRACT The baryonic Tully–Fisher relation (BTFR) is an important tool for constraining galaxy evolution models. As 21-cm H i emission studies have been largely restricted to low redshifts, the redshift evolution of the BTFR is less studied. The upcoming LADUMA survey (Looking At the Distant Univer...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2021-11, Vol.507 (3), p.3267-3284
Main Authors: Glowacki, M, Elson, E, Davé, R
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-2c4ba47618e32b533cf2293fe0f831e2bb7b5d40a94ef16e7bd31e30e93162c23
cites cdi_FETCH-LOGICAL-c313t-2c4ba47618e32b533cf2293fe0f831e2bb7b5d40a94ef16e7bd31e30e93162c23
container_end_page 3284
container_issue 3
container_start_page 3267
container_title Monthly notices of the Royal Astronomical Society
container_volume 507
creator Glowacki, M
Elson, E
Davé, R
description ABSTRACT The baryonic Tully–Fisher relation (BTFR) is an important tool for constraining galaxy evolution models. As 21-cm H i emission studies have been largely restricted to low redshifts, the redshift evolution of the BTFR is less studied. The upcoming LADUMA survey (Looking At the Distant Universe with the MeerKAT Array) will address this. As preparation for LADUMA, we use the SIMBA hydrodynamical galaxy formation simulation from the SIMBA-hires $(25\, h^{-1}{\rm Mpc})^3$ run to generate rotational velocity measures from galaxy rotation curves (Vflat) and H i spectral line profile widths (W50 and W20) at three different redshifts (z = 0, 0.5, and 1). Using these measures, together with the dark matter velocity dispersion and halo mass, we consider the redshift evolution of the BTFR of SIMBA galaxies. We find that LADUMA will be successful in detecting weak redshift evolution of the BTFR, provided that auxiliary data are used to distinguish galaxies with discy morphologies. W20 spectral line widths give lower scatter and more pronounced redshift evolution compared to W50. We also compare these rotational velocity measures to the dark matter velocity dispersion across redshift and galaxy morphology. We find weak redshift evolution between rotational velocity and the dark matter halo mass, and provide fits for estimating a galaxy’s dark matter halo mass from H i spectral line widths. This study with SIMBA showcases the importance of upcoming, deep Square Kilometre Array pathfinder surveys such as LADUMA, and provides predictions to compare with the redshift evolution of the BTFR and galaxy dark matter content from H i rotational velocity measures.
doi_str_mv 10.1093/mnras/stab2279
format article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stab2279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stab2279</oup_id><sourcerecordid>10.1093/mnras/stab2279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-2c4ba47618e32b533cf2293fe0f831e2bb7b5d40a94ef16e7bd31e30e93162c23</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqGwMntlSGv7EiceS0VLpSIGwhzZjq0YpXFlp0jdeAfekCchtDAznfTf_51OH0K3lEwpETDb9kHGWRykYqwQZyihwPOUCc7PUUII5GlZUHqJrmJ8I4RkwHiCVlVrcDBNbJ0dsHn33X5wvsfe4mHcKBkOvncaV_uuO3x9fC5dbE0YiU4ee67HL-un-_k1urCyi-bmd07Q6_KhWjymm-fVejHfpBooDCnTmZJZwWlpgKkcQFvGBFhDbAnUMKUKlTcZkSIzlnJTqGaMgRgBlDPNYIKmp7s6-BiDsfUuuO34ZU1J_aOhPmqo_zSMwN0J8Pvdf91vS7hh2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The redshift evolution of the baryonic Tully–Fisher relation in SIMBA</title><source>Oxford University Press Open Access</source><creator>Glowacki, M ; Elson, E ; Davé, R</creator><creatorcontrib>Glowacki, M ; Elson, E ; Davé, R</creatorcontrib><description>ABSTRACT The baryonic Tully–Fisher relation (BTFR) is an important tool for constraining galaxy evolution models. As 21-cm H i emission studies have been largely restricted to low redshifts, the redshift evolution of the BTFR is less studied. The upcoming LADUMA survey (Looking At the Distant Universe with the MeerKAT Array) will address this. As preparation for LADUMA, we use the SIMBA hydrodynamical galaxy formation simulation from the SIMBA-hires $(25\, h^{-1}{\rm Mpc})^3$ run to generate rotational velocity measures from galaxy rotation curves (Vflat) and H i spectral line profile widths (W50 and W20) at three different redshifts (z = 0, 0.5, and 1). Using these measures, together with the dark matter velocity dispersion and halo mass, we consider the redshift evolution of the BTFR of SIMBA galaxies. We find that LADUMA will be successful in detecting weak redshift evolution of the BTFR, provided that auxiliary data are used to distinguish galaxies with discy morphologies. W20 spectral line widths give lower scatter and more pronounced redshift evolution compared to W50. We also compare these rotational velocity measures to the dark matter velocity dispersion across redshift and galaxy morphology. We find weak redshift evolution between rotational velocity and the dark matter halo mass, and provide fits for estimating a galaxy’s dark matter halo mass from H i spectral line widths. This study with SIMBA showcases the importance of upcoming, deep Square Kilometre Array pathfinder surveys such as LADUMA, and provides predictions to compare with the redshift evolution of the BTFR and galaxy dark matter content from H i rotational velocity measures.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stab2279</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2021-11, Vol.507 (3), p.3267-3284</ispartof><rights>2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-2c4ba47618e32b533cf2293fe0f831e2bb7b5d40a94ef16e7bd31e30e93162c23</citedby><cites>FETCH-LOGICAL-c313t-2c4ba47618e32b533cf2293fe0f831e2bb7b5d40a94ef16e7bd31e30e93162c23</cites><orcidid>0000-0003-2842-9434 ; 0000-0001-9359-0713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1603,27922,27923</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stab2279$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Glowacki, M</creatorcontrib><creatorcontrib>Elson, E</creatorcontrib><creatorcontrib>Davé, R</creatorcontrib><title>The redshift evolution of the baryonic Tully–Fisher relation in SIMBA</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT The baryonic Tully–Fisher relation (BTFR) is an important tool for constraining galaxy evolution models. As 21-cm H i emission studies have been largely restricted to low redshifts, the redshift evolution of the BTFR is less studied. The upcoming LADUMA survey (Looking At the Distant Universe with the MeerKAT Array) will address this. As preparation for LADUMA, we use the SIMBA hydrodynamical galaxy formation simulation from the SIMBA-hires $(25\, h^{-1}{\rm Mpc})^3$ run to generate rotational velocity measures from galaxy rotation curves (Vflat) and H i spectral line profile widths (W50 and W20) at three different redshifts (z = 0, 0.5, and 1). Using these measures, together with the dark matter velocity dispersion and halo mass, we consider the redshift evolution of the BTFR of SIMBA galaxies. We find that LADUMA will be successful in detecting weak redshift evolution of the BTFR, provided that auxiliary data are used to distinguish galaxies with discy morphologies. W20 spectral line widths give lower scatter and more pronounced redshift evolution compared to W50. We also compare these rotational velocity measures to the dark matter velocity dispersion across redshift and galaxy morphology. We find weak redshift evolution between rotational velocity and the dark matter halo mass, and provide fits for estimating a galaxy’s dark matter halo mass from H i spectral line widths. This study with SIMBA showcases the importance of upcoming, deep Square Kilometre Array pathfinder surveys such as LADUMA, and provides predictions to compare with the redshift evolution of the BTFR and galaxy dark matter content from H i rotational velocity measures.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqGwMntlSGv7EiceS0VLpSIGwhzZjq0YpXFlp0jdeAfekCchtDAznfTf_51OH0K3lEwpETDb9kHGWRykYqwQZyihwPOUCc7PUUII5GlZUHqJrmJ8I4RkwHiCVlVrcDBNbJ0dsHn33X5wvsfe4mHcKBkOvncaV_uuO3x9fC5dbE0YiU4ee67HL-un-_k1urCyi-bmd07Q6_KhWjymm-fVejHfpBooDCnTmZJZwWlpgKkcQFvGBFhDbAnUMKUKlTcZkSIzlnJTqGaMgRgBlDPNYIKmp7s6-BiDsfUuuO34ZU1J_aOhPmqo_zSMwN0J8Pvdf91vS7hh2g</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Glowacki, M</creator><creator>Elson, E</creator><creator>Davé, R</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2842-9434</orcidid><orcidid>https://orcid.org/0000-0001-9359-0713</orcidid></search><sort><creationdate>20211101</creationdate><title>The redshift evolution of the baryonic Tully–Fisher relation in SIMBA</title><author>Glowacki, M ; Elson, E ; Davé, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-2c4ba47618e32b533cf2293fe0f831e2bb7b5d40a94ef16e7bd31e30e93162c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glowacki, M</creatorcontrib><creatorcontrib>Elson, E</creatorcontrib><creatorcontrib>Davé, R</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Glowacki, M</au><au>Elson, E</au><au>Davé, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The redshift evolution of the baryonic Tully–Fisher relation in SIMBA</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>507</volume><issue>3</issue><spage>3267</spage><epage>3284</epage><pages>3267-3284</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT The baryonic Tully–Fisher relation (BTFR) is an important tool for constraining galaxy evolution models. As 21-cm H i emission studies have been largely restricted to low redshifts, the redshift evolution of the BTFR is less studied. The upcoming LADUMA survey (Looking At the Distant Universe with the MeerKAT Array) will address this. As preparation for LADUMA, we use the SIMBA hydrodynamical galaxy formation simulation from the SIMBA-hires $(25\, h^{-1}{\rm Mpc})^3$ run to generate rotational velocity measures from galaxy rotation curves (Vflat) and H i spectral line profile widths (W50 and W20) at three different redshifts (z = 0, 0.5, and 1). Using these measures, together with the dark matter velocity dispersion and halo mass, we consider the redshift evolution of the BTFR of SIMBA galaxies. We find that LADUMA will be successful in detecting weak redshift evolution of the BTFR, provided that auxiliary data are used to distinguish galaxies with discy morphologies. W20 spectral line widths give lower scatter and more pronounced redshift evolution compared to W50. We also compare these rotational velocity measures to the dark matter velocity dispersion across redshift and galaxy morphology. We find weak redshift evolution between rotational velocity and the dark matter halo mass, and provide fits for estimating a galaxy’s dark matter halo mass from H i spectral line widths. This study with SIMBA showcases the importance of upcoming, deep Square Kilometre Array pathfinder surveys such as LADUMA, and provides predictions to compare with the redshift evolution of the BTFR and galaxy dark matter content from H i rotational velocity measures.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stab2279</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2842-9434</orcidid><orcidid>https://orcid.org/0000-0001-9359-0713</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2021-11, Vol.507 (3), p.3267-3284
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stab2279
source Oxford University Press Open Access
title The redshift evolution of the baryonic Tully–Fisher relation in SIMBA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A44%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20redshift%20evolution%20of%20the%20baryonic%20Tully%E2%80%93Fisher%20relation%20in%20SIMBA&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Glowacki,%20M&rft.date=2021-11-01&rft.volume=507&rft.issue=3&rft.spage=3267&rft.epage=3284&rft.pages=3267-3284&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stab2279&rft_dat=%3Coup_TOX%3E10.1093/mnras/stab2279%3C/oup_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-2c4ba47618e32b533cf2293fe0f831e2bb7b5d40a94ef16e7bd31e30e93162c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stab2279&rfr_iscdi=true