Loading…
Multifidelity emulation for the matter power spectrum using Gaussian processes
ABSTRACT We present methods for emulating the matter power spectrum by combining information from cosmological N-body simulations at different resolutions. An emulator allows estimation of simulation output by interpolating across the parameter space of a limited number of simulations. We present th...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2022-01, Vol.509 (2), p.2551-2565 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c203t-e0148d7cb89e97df4f50d2bfef02bbc50bcc11f346b2045a55efca4eed4207a93 |
---|---|
cites | cdi_FETCH-LOGICAL-c203t-e0148d7cb89e97df4f50d2bfef02bbc50bcc11f346b2045a55efca4eed4207a93 |
container_end_page | 2565 |
container_issue | 2 |
container_start_page | 2551 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 509 |
creator | Ho, Ming-Feng Bird, Simeon Shelton, Christian R |
description | ABSTRACT
We present methods for emulating the matter power spectrum by combining information from cosmological N-body simulations at different resolutions. An emulator allows estimation of simulation output by interpolating across the parameter space of a limited number of simulations. We present the first implementation in cosmology of multifidelity emulation, where many low-resolution simulations are combined with a few high-resolution simulations to achieve an increased emulation accuracy. The power spectrum’s dependence on cosmology is learned from the low-resolution simulations, which are in turn calibrated using high-resolution simulations. We show that our multifidelity emulator predicts high-fidelity (HF) counterparts to percent-level relative accuracy when using only three HF simulations and outperforms a single-fidelity emulator that uses 11 simulations, although we do not attempt to produce a converged emulator with high absolute accuracy. With a fixed number of HF training simulations, we show that our multifidelity emulator is ≃100 times better than a single-fidelity emulator at $k \le 2 \, h\textrm {Mpc}{^{-1}}$, and ≃20 times better at $3 \le k \lt 6.4 \, h\textrm {Mpc}{^{-1}}$. Multifidelity emulation is fast to train, using only a simple modification to standard Gaussian processes. Our proposed emulator shows a new way to predict non-linear scales by fusing simulations from different fidelities. |
doi_str_mv | 10.1093/mnras/stab3114 |
format | article |
fullrecord | <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stab3114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stab3114</oup_id><sourcerecordid>10.1093/mnras/stab3114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-e0148d7cb89e97df4f50d2bfef02bbc50bcc11f346b2045a55efca4eed4207a93</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqWwMntlSPsc20kzogpapAILzJHtPINRvuTnCPXfUyjMLPcu99zhMHYtYCGgksuuj4aWlIyVQqgTNhOy0FleFcUpmwFIna1KIc7ZBdEHACiZFzP29Di1KfjQYBvSnmM3tSaFoed-iDy9I-9MShj5OHwekkZ0KU4dnyj0b3xjJqJgej7GwSER0iU786YlvPrtOXu9v3tZb7Pd8-ZhfbvLXA4yZQhCrZrS2VWFVdl45TU0ufXoIbfWabDOCeGlKmwOShut0TujEBuVQ2kqOWeL46-LA1FEX48xdCbuawH1t436x0b9Z-MA3ByBYRr_234BhM9mJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multifidelity emulation for the matter power spectrum using Gaussian processes</title><source>Open Access: Oxford University Press Open Journals</source><creator>Ho, Ming-Feng ; Bird, Simeon ; Shelton, Christian R</creator><creatorcontrib>Ho, Ming-Feng ; Bird, Simeon ; Shelton, Christian R</creatorcontrib><description>ABSTRACT
We present methods for emulating the matter power spectrum by combining information from cosmological N-body simulations at different resolutions. An emulator allows estimation of simulation output by interpolating across the parameter space of a limited number of simulations. We present the first implementation in cosmology of multifidelity emulation, where many low-resolution simulations are combined with a few high-resolution simulations to achieve an increased emulation accuracy. The power spectrum’s dependence on cosmology is learned from the low-resolution simulations, which are in turn calibrated using high-resolution simulations. We show that our multifidelity emulator predicts high-fidelity (HF) counterparts to percent-level relative accuracy when using only three HF simulations and outperforms a single-fidelity emulator that uses 11 simulations, although we do not attempt to produce a converged emulator with high absolute accuracy. With a fixed number of HF training simulations, we show that our multifidelity emulator is ≃100 times better than a single-fidelity emulator at $k \le 2 \, h\textrm {Mpc}{^{-1}}$, and ≃20 times better at $3 \le k \lt 6.4 \, h\textrm {Mpc}{^{-1}}$. Multifidelity emulation is fast to train, using only a simple modification to standard Gaussian processes. Our proposed emulator shows a new way to predict non-linear scales by fusing simulations from different fidelities.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stab3114</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2022-01, Vol.509 (2), p.2551-2565</ispartof><rights>2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-e0148d7cb89e97df4f50d2bfef02bbc50bcc11f346b2045a55efca4eed4207a93</citedby><cites>FETCH-LOGICAL-c203t-e0148d7cb89e97df4f50d2bfef02bbc50bcc11f346b2045a55efca4eed4207a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stab3114$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Ho, Ming-Feng</creatorcontrib><creatorcontrib>Bird, Simeon</creatorcontrib><creatorcontrib>Shelton, Christian R</creatorcontrib><title>Multifidelity emulation for the matter power spectrum using Gaussian processes</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT
We present methods for emulating the matter power spectrum by combining information from cosmological N-body simulations at different resolutions. An emulator allows estimation of simulation output by interpolating across the parameter space of a limited number of simulations. We present the first implementation in cosmology of multifidelity emulation, where many low-resolution simulations are combined with a few high-resolution simulations to achieve an increased emulation accuracy. The power spectrum’s dependence on cosmology is learned from the low-resolution simulations, which are in turn calibrated using high-resolution simulations. We show that our multifidelity emulator predicts high-fidelity (HF) counterparts to percent-level relative accuracy when using only three HF simulations and outperforms a single-fidelity emulator that uses 11 simulations, although we do not attempt to produce a converged emulator with high absolute accuracy. With a fixed number of HF training simulations, we show that our multifidelity emulator is ≃100 times better than a single-fidelity emulator at $k \le 2 \, h\textrm {Mpc}{^{-1}}$, and ≃20 times better at $3 \le k \lt 6.4 \, h\textrm {Mpc}{^{-1}}$. Multifidelity emulation is fast to train, using only a simple modification to standard Gaussian processes. Our proposed emulator shows a new way to predict non-linear scales by fusing simulations from different fidelities.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqWwMntlSPsc20kzogpapAILzJHtPINRvuTnCPXfUyjMLPcu99zhMHYtYCGgksuuj4aWlIyVQqgTNhOy0FleFcUpmwFIna1KIc7ZBdEHACiZFzP29Di1KfjQYBvSnmM3tSaFoed-iDy9I-9MShj5OHwekkZ0KU4dnyj0b3xjJqJgej7GwSER0iU786YlvPrtOXu9v3tZb7Pd8-ZhfbvLXA4yZQhCrZrS2VWFVdl45TU0ufXoIbfWabDOCeGlKmwOShut0TujEBuVQ2kqOWeL46-LA1FEX48xdCbuawH1t436x0b9Z-MA3ByBYRr_234BhM9mJQ</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Ho, Ming-Feng</creator><creator>Bird, Simeon</creator><creator>Shelton, Christian R</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220101</creationdate><title>Multifidelity emulation for the matter power spectrum using Gaussian processes</title><author>Ho, Ming-Feng ; Bird, Simeon ; Shelton, Christian R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-e0148d7cb89e97df4f50d2bfef02bbc50bcc11f346b2045a55efca4eed4207a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Ming-Feng</creatorcontrib><creatorcontrib>Bird, Simeon</creatorcontrib><creatorcontrib>Shelton, Christian R</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ho, Ming-Feng</au><au>Bird, Simeon</au><au>Shelton, Christian R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifidelity emulation for the matter power spectrum using Gaussian processes</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>509</volume><issue>2</issue><spage>2551</spage><epage>2565</epage><pages>2551-2565</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT
We present methods for emulating the matter power spectrum by combining information from cosmological N-body simulations at different resolutions. An emulator allows estimation of simulation output by interpolating across the parameter space of a limited number of simulations. We present the first implementation in cosmology of multifidelity emulation, where many low-resolution simulations are combined with a few high-resolution simulations to achieve an increased emulation accuracy. The power spectrum’s dependence on cosmology is learned from the low-resolution simulations, which are in turn calibrated using high-resolution simulations. We show that our multifidelity emulator predicts high-fidelity (HF) counterparts to percent-level relative accuracy when using only three HF simulations and outperforms a single-fidelity emulator that uses 11 simulations, although we do not attempt to produce a converged emulator with high absolute accuracy. With a fixed number of HF training simulations, we show that our multifidelity emulator is ≃100 times better than a single-fidelity emulator at $k \le 2 \, h\textrm {Mpc}{^{-1}}$, and ≃20 times better at $3 \le k \lt 6.4 \, h\textrm {Mpc}{^{-1}}$. Multifidelity emulation is fast to train, using only a simple modification to standard Gaussian processes. Our proposed emulator shows a new way to predict non-linear scales by fusing simulations from different fidelities.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stab3114</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2022-01, Vol.509 (2), p.2551-2565 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_crossref_primary_10_1093_mnras_stab3114 |
source | Open Access: Oxford University Press Open Journals |
title | Multifidelity emulation for the matter power spectrum using Gaussian processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifidelity%20emulation%20for%20the%20matter%20power%20spectrum%20using%20Gaussian%20processes&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Ho,%20Ming-Feng&rft.date=2022-01-01&rft.volume=509&rft.issue=2&rft.spage=2551&rft.epage=2565&rft.pages=2551-2565&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stab3114&rft_dat=%3Coup_TOX%3E10.1093/mnras/stab3114%3C/oup_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c203t-e0148d7cb89e97df4f50d2bfef02bbc50bcc11f346b2045a55efca4eed4207a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stab3114&rfr_iscdi=true |