Loading…

Data-efficient classification of radio galaxies

ABSTRACT The continuum emission from radio galaxies can be generally classified into different morphological classes such as FRI, FRII, bent, or compact. In this paper, we explore the task of radio galaxy classification based on morphology using deep learning methods with a focus on using a small-sc...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2022-01, Vol.509 (2), p.2269-2280
Main Authors: Samudre, Ashwin, George, Lijo T, Bansal, Mahak, Wadadekar, Yogesh
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c273t-7c3f7cbb36ffd99222b0e9404dcc7726a88b6d5a86fc6c64b4ea8a8b95dfbffb3
cites
container_end_page 2280
container_issue 2
container_start_page 2269
container_title Monthly notices of the Royal Astronomical Society
container_volume 509
creator Samudre, Ashwin
George, Lijo T
Bansal, Mahak
Wadadekar, Yogesh
description ABSTRACT The continuum emission from radio galaxies can be generally classified into different morphological classes such as FRI, FRII, bent, or compact. In this paper, we explore the task of radio galaxy classification based on morphology using deep learning methods with a focus on using a small-scale data set (∼2000 samples). We apply few-shot learning techniques based on twin networks and transfer learning techniques using a pre-trained DenseNet model with advanced techniques like cyclical learning rate and discriminative learning to train the model rapidly. We achieve a classification accuracy of over 92 per cent using our best-performing model with the biggest source of confusion being between bent- and FRII-type galaxies. Our results show that focusing on a small but curated data set along with the use of best practices to train the neural network can lead to good results. Automated classification techniques will be crucial for upcoming surveys with next-generation radio telescopes that are expected to detect hundreds of thousands of new radio galaxies in the near future.
doi_str_mv 10.1093/mnras/stab3144
format article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stab3144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stab3144</oup_id><sourcerecordid>10.1093/mnras/stab3144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-7c3f7cbb36ffd99222b0e9404dcc7726a88b6d5a86fc6c64b4ea8a8b95dfbffb3</originalsourceid><addsrcrecordid>eNqFj0tLxDAUhYMoWGfcuu7WRaZ5NY-ljE8YcOOsy02aK5FOOyQV9N87Orp2dThwvgMfIVecrThzstmNGUpTZvCSK3VCKi51S4XT-pRUjMmWWsP5Obko5Y0xpqTQFWluYQYaEVNIcZzrMEAp6dBgTtNYT1hn6NNUv8IAHymWJTlDGEq8_M0F2d7fvawf6eb54Wl9s6FBGDlTEySa4L3UiL1zQgjPolNM9SEYIzRY63XfgtUYdNDKqwgWrHdtjx7RywVZHX9DnkrJEbt9TjvInx1n3bdu96Pb_ekegOsjML3v_9t-AVxtWgE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data-efficient classification of radio galaxies</title><source>Oxford Journals Open Access Collection</source><creator>Samudre, Ashwin ; George, Lijo T ; Bansal, Mahak ; Wadadekar, Yogesh</creator><creatorcontrib>Samudre, Ashwin ; George, Lijo T ; Bansal, Mahak ; Wadadekar, Yogesh</creatorcontrib><description>ABSTRACT The continuum emission from radio galaxies can be generally classified into different morphological classes such as FRI, FRII, bent, or compact. In this paper, we explore the task of radio galaxy classification based on morphology using deep learning methods with a focus on using a small-scale data set (∼2000 samples). We apply few-shot learning techniques based on twin networks and transfer learning techniques using a pre-trained DenseNet model with advanced techniques like cyclical learning rate and discriminative learning to train the model rapidly. We achieve a classification accuracy of over 92 per cent using our best-performing model with the biggest source of confusion being between bent- and FRII-type galaxies. Our results show that focusing on a small but curated data set along with the use of best practices to train the neural network can lead to good results. Automated classification techniques will be crucial for upcoming surveys with next-generation radio telescopes that are expected to detect hundreds of thousands of new radio galaxies in the near future.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stab3144</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2022-01, Vol.509 (2), p.2269-2280</ispartof><rights>2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-7c3f7cbb36ffd99222b0e9404dcc7726a88b6d5a86fc6c64b4ea8a8b95dfbffb3</citedby><orcidid>0000-0003-0287-5022 ; 0000-0001-8136-7645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27923,27924</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stab3144$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Samudre, Ashwin</creatorcontrib><creatorcontrib>George, Lijo T</creatorcontrib><creatorcontrib>Bansal, Mahak</creatorcontrib><creatorcontrib>Wadadekar, Yogesh</creatorcontrib><title>Data-efficient classification of radio galaxies</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT The continuum emission from radio galaxies can be generally classified into different morphological classes such as FRI, FRII, bent, or compact. In this paper, we explore the task of radio galaxy classification based on morphology using deep learning methods with a focus on using a small-scale data set (∼2000 samples). We apply few-shot learning techniques based on twin networks and transfer learning techniques using a pre-trained DenseNet model with advanced techniques like cyclical learning rate and discriminative learning to train the model rapidly. We achieve a classification accuracy of over 92 per cent using our best-performing model with the biggest source of confusion being between bent- and FRII-type galaxies. Our results show that focusing on a small but curated data set along with the use of best practices to train the neural network can lead to good results. Automated classification techniques will be crucial for upcoming surveys with next-generation radio telescopes that are expected to detect hundreds of thousands of new radio galaxies in the near future.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFj0tLxDAUhYMoWGfcuu7WRaZ5NY-ljE8YcOOsy02aK5FOOyQV9N87Orp2dThwvgMfIVecrThzstmNGUpTZvCSK3VCKi51S4XT-pRUjMmWWsP5Obko5Y0xpqTQFWluYQYaEVNIcZzrMEAp6dBgTtNYT1hn6NNUv8IAHymWJTlDGEq8_M0F2d7fvawf6eb54Wl9s6FBGDlTEySa4L3UiL1zQgjPolNM9SEYIzRY63XfgtUYdNDKqwgWrHdtjx7RywVZHX9DnkrJEbt9TjvInx1n3bdu96Pb_ekegOsjML3v_9t-AVxtWgE</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Samudre, Ashwin</creator><creator>George, Lijo T</creator><creator>Bansal, Mahak</creator><creator>Wadadekar, Yogesh</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0287-5022</orcidid><orcidid>https://orcid.org/0000-0001-8136-7645</orcidid></search><sort><creationdate>20220101</creationdate><title>Data-efficient classification of radio galaxies</title><author>Samudre, Ashwin ; George, Lijo T ; Bansal, Mahak ; Wadadekar, Yogesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-7c3f7cbb36ffd99222b0e9404dcc7726a88b6d5a86fc6c64b4ea8a8b95dfbffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samudre, Ashwin</creatorcontrib><creatorcontrib>George, Lijo T</creatorcontrib><creatorcontrib>Bansal, Mahak</creatorcontrib><creatorcontrib>Wadadekar, Yogesh</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Samudre, Ashwin</au><au>George, Lijo T</au><au>Bansal, Mahak</au><au>Wadadekar, Yogesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-efficient classification of radio galaxies</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>509</volume><issue>2</issue><spage>2269</spage><epage>2280</epage><pages>2269-2280</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT The continuum emission from radio galaxies can be generally classified into different morphological classes such as FRI, FRII, bent, or compact. In this paper, we explore the task of radio galaxy classification based on morphology using deep learning methods with a focus on using a small-scale data set (∼2000 samples). We apply few-shot learning techniques based on twin networks and transfer learning techniques using a pre-trained DenseNet model with advanced techniques like cyclical learning rate and discriminative learning to train the model rapidly. We achieve a classification accuracy of over 92 per cent using our best-performing model with the biggest source of confusion being between bent- and FRII-type galaxies. Our results show that focusing on a small but curated data set along with the use of best practices to train the neural network can lead to good results. Automated classification techniques will be crucial for upcoming surveys with next-generation radio telescopes that are expected to detect hundreds of thousands of new radio galaxies in the near future.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stab3144</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0287-5022</orcidid><orcidid>https://orcid.org/0000-0001-8136-7645</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2022-01, Vol.509 (2), p.2269-2280
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stab3144
source Oxford Journals Open Access Collection
title Data-efficient classification of radio galaxies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-efficient%20classification%20of%20radio%20galaxies&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Samudre,%20Ashwin&rft.date=2022-01-01&rft.volume=509&rft.issue=2&rft.spage=2269&rft.epage=2280&rft.pages=2269-2280&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stab3144&rft_dat=%3Coup_TOX%3E10.1093/mnras/stab3144%3C/oup_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-7c3f7cbb36ffd99222b0e9404dcc7726a88b6d5a86fc6c64b4ea8a8b95dfbffb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stab3144&rfr_iscdi=true