Loading…
Constraining violations of the weak equivalence principle Using CHIME FRBs
ABSTRACT Einstein’s General relativity (GR) is the basis of modern astronomy and astrophysics. Testing the validity of basic assumptions of GR is important. In this work, we test a possible violation of the weak equivalence principle (WEP), i.e. there might be a time lag between photons of different...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2022-02, Vol.509 (4), p.5636-5640 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
Einstein’s General relativity (GR) is the basis of modern astronomy and astrophysics. Testing the validity of basic assumptions of GR is important. In this work, we test a possible violation of the weak equivalence principle (WEP), i.e. there might be a time lag between photons of different frequencies caused by the effect of gravitational fields if the speeds of photons are slightly different at different frequencies. We use Fast radio bursts (FRBs), which are astronomical transients with millisecond time-scales detected in the radio frequency range. Being at cosmological distances, accumulated time delay of FRBs can be caused by the plasma in between an FRB source and an observer, and by gravitational fields in the path of the signal. We segregate the delay due to dispersion and gravitational field using the post-Newtonian formalism (PPN) parameter Δγ, which defines the space curvature due to gravity by a unit test mass. We did not detect any time delay from FRBs but obtained tight constraints on the upper limit of Δγ. For FRB20181117C with z = 1.83 ± 0.28 and νobs = $676.5\, {\rm MHz}$, the best possible constraint is obtained at log(Δγ) = $-21.58 ^{+0.10}_{-0.12}$ and log(Δγ/rE) = $-21.75 ^{+0.10}_{-0.14}$, respectively, where rE is the energy ratio of two photons of the same FRB signal. This constraint is about one order of magnitude better than the previous constraint obtained with FRBs, and five orders tighter than any constraint obtained using other cosmological sources. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stab3344 |