Loading…
Evolution of Earth-like extended exospheres orbiting solar-like stars
ABSTRACT Recent observations of the Earth’s exosphere revealed the presence of an extended hydrogenic component that could reach distances beyond 40 planetary radii. Detection of similar extended exospheres around Earth-like exoplanets could reveal crucial facts in terms of habitability. The presenc...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2021-04, Vol.502 (4), p.6170-6176 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
Recent observations of the Earth’s exosphere revealed the presence of an extended hydrogenic component that could reach distances beyond 40 planetary radii. Detection of similar extended exospheres around Earth-like exoplanets could reveal crucial facts in terms of habitability. The presence of these rarified hydrogen envelopes is extremely dependent on the planetary environment, dominated by the ionizing radiation and plasma winds coming from the host star. Radiation and fast wind particles ionize the uppermost layers of planetary atmospheres, especially for planets orbiting active, young stars. The survival of the produced ions in the exosphere of such planets is subject to the action of the magnetized stellar winds, particularly for unmagnetized bodies. In order to address these star–planet interactions, we have carried out numerical 2.5D ideal MHD simulations using the pluto code to study the dynamical evolution of tenuous, hydrogen-rich, Earth-like extended exospheres for an unmagnetized planet, at different stellar evolutionary stages: from a very young, solar-like star of 0.1 Gyr to a 5.0 Gyr star. For each star–planet configuration, we show that the morphology of extended Earth-like hydrogen exospheres is strongly dependent on the incident stellar winds and the produced ions present in these gaseous envelopes, showing that the ionized component of Earth-like exospheres is quickly swept by the stellar winds of young stars, leading to large bow shock formation for later stellar ages. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stab492 |