Loading…

Modelling the spectra of the kilonova AT2017gfo – I. The photospheric epochs

ABSTRACT The kilonova (KN) associated with the binary neutron star (BNS) merger GW170817 is the only known electromagnetic counterpart to a gravitational wave source. Here we produce a sequence of radiative transfer models (using tardis) with updated atomic data, and compare them to accurately calib...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2022-07, Vol.515 (1), p.631-651
Main Authors: Gillanders, J H, Smartt, S J, Sim, S A, Bauswein, A, Goriely, S
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-e50b0a3988e13d3381139b0385ab0c51574cd0a700225635775fefacbb2f7f6e3
cites cdi_FETCH-LOGICAL-c313t-e50b0a3988e13d3381139b0385ab0c51574cd0a700225635775fefacbb2f7f6e3
container_end_page 651
container_issue 1
container_start_page 631
container_title Monthly notices of the Royal Astronomical Society
container_volume 515
creator Gillanders, J H
Smartt, S J
Sim, S A
Bauswein, A
Goriely, S
description ABSTRACT The kilonova (KN) associated with the binary neutron star (BNS) merger GW170817 is the only known electromagnetic counterpart to a gravitational wave source. Here we produce a sequence of radiative transfer models (using tardis) with updated atomic data, and compare them to accurately calibrated spectra. We use element compositions from nuclear network calculations based on a realistic hydrodynamical simulation of a BNS merger. We show that the blue spectrum at +1.4 d after merger requires a nucleosynthetic trajectory with a high electron fraction. Our best-fitting model is composed entirely of first r-process peak elements (Sr and Zr) and the strong absorption feature is reproduced well by Sr ii absorption. At this epoch, we set an upper limit on the lanthanide mass fraction of $X_{{\small LN}} \lesssim 5 \times 10^{-3}$. In contrast, all subsequent spectra from +2.4 to 6.4 d require the presence of a modest amount of lanthanide material ($X_{{\small LN}} \simeq 0.05^{+0.05}_{-0.02}$), produced by a trajectory with Ye = 0.29. This produces lanthanide-induced line blanketing below 6000 Å, and sufficient light r-process elements to explain the persistent strong feature at ∼0.7–1.0 $\mu$m (Sr ii). The composition gives good matches to the observed data, indicating that the strong blue flux deficit results in the near-infrared (NIR) excess. The disjoint in composition between the first epoch and all others indicates either ejecta stratification, or the presence of two distinct components of material. This further supports the ‘two-component’ KN model, and constrains the element composition from nucleosynthetic trajectories. The major uncertainties lie in availability of atomic data and the ionization state of the expanding material.
doi_str_mv 10.1093/mnras/stac1258
format article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stac1258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stac1258</oup_id><sourcerecordid>10.1093/mnras/stac1258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-e50b0a3988e13d3381139b0385ab0c51574cd0a700225635775fefacbb2f7f6e3</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqWwMntlSHuvbx0nY1XxU6nAUubIcewmkMaRHZDYeAfekCehtDAzHR2dn-Fj7BJhgpDTdNsFHadx0AaFzI7YCCmVicjT9JiNAEgmmUI8ZWcxPgPAjEQ6Yg_3vrJt23QbPtSWx96aIWju3d6-NK3v_Jvm87UAVBvn-dfHJ19O-HqX9rUffOxrGxrDbe9NHc_ZidNttBe_OmZPN9frxV2yerxdLuarxBDSkFgJJWjKs8wiVUQZIuUlUCZ1CUaiVDNTgVYAQsiUpFLSWadNWQqnXGppzCaHXxN8jMG6og_NVof3AqH4oVHsaRR_NHaDq8PAv_b_db8BAN5i5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modelling the spectra of the kilonova AT2017gfo – I. The photospheric epochs</title><source>Oxford University Press Open Access</source><source>EZB Electronic Journals Library</source><creator>Gillanders, J H ; Smartt, S J ; Sim, S A ; Bauswein, A ; Goriely, S</creator><creatorcontrib>Gillanders, J H ; Smartt, S J ; Sim, S A ; Bauswein, A ; Goriely, S</creatorcontrib><description>ABSTRACT The kilonova (KN) associated with the binary neutron star (BNS) merger GW170817 is the only known electromagnetic counterpart to a gravitational wave source. Here we produce a sequence of radiative transfer models (using tardis) with updated atomic data, and compare them to accurately calibrated spectra. We use element compositions from nuclear network calculations based on a realistic hydrodynamical simulation of a BNS merger. We show that the blue spectrum at +1.4 d after merger requires a nucleosynthetic trajectory with a high electron fraction. Our best-fitting model is composed entirely of first r-process peak elements (Sr and Zr) and the strong absorption feature is reproduced well by Sr ii absorption. At this epoch, we set an upper limit on the lanthanide mass fraction of $X_{{\small LN}} \lesssim 5 \times 10^{-3}$. In contrast, all subsequent spectra from +2.4 to 6.4 d require the presence of a modest amount of lanthanide material ($X_{{\small LN}} \simeq 0.05^{+0.05}_{-0.02}$), produced by a trajectory with Ye = 0.29. This produces lanthanide-induced line blanketing below 6000 Å, and sufficient light r-process elements to explain the persistent strong feature at ∼0.7–1.0 $\mu$m (Sr ii). The composition gives good matches to the observed data, indicating that the strong blue flux deficit results in the near-infrared (NIR) excess. The disjoint in composition between the first epoch and all others indicates either ejecta stratification, or the presence of two distinct components of material. This further supports the ‘two-component’ KN model, and constrains the element composition from nucleosynthetic trajectories. The major uncertainties lie in availability of atomic data and the ionization state of the expanding material.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stac1258</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2022-07, Vol.515 (1), p.631-651</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of Royal Astronomical Society. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-e50b0a3988e13d3381139b0385ab0c51574cd0a700225635775fefacbb2f7f6e3</citedby><cites>FETCH-LOGICAL-c313t-e50b0a3988e13d3381139b0385ab0c51574cd0a700225635775fefacbb2f7f6e3</cites><orcidid>0000-0002-8094-6108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1599,27905,27906</link.rule.ids></links><search><creatorcontrib>Gillanders, J H</creatorcontrib><creatorcontrib>Smartt, S J</creatorcontrib><creatorcontrib>Sim, S A</creatorcontrib><creatorcontrib>Bauswein, A</creatorcontrib><creatorcontrib>Goriely, S</creatorcontrib><title>Modelling the spectra of the kilonova AT2017gfo – I. The photospheric epochs</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT The kilonova (KN) associated with the binary neutron star (BNS) merger GW170817 is the only known electromagnetic counterpart to a gravitational wave source. Here we produce a sequence of radiative transfer models (using tardis) with updated atomic data, and compare them to accurately calibrated spectra. We use element compositions from nuclear network calculations based on a realistic hydrodynamical simulation of a BNS merger. We show that the blue spectrum at +1.4 d after merger requires a nucleosynthetic trajectory with a high electron fraction. Our best-fitting model is composed entirely of first r-process peak elements (Sr and Zr) and the strong absorption feature is reproduced well by Sr ii absorption. At this epoch, we set an upper limit on the lanthanide mass fraction of $X_{{\small LN}} \lesssim 5 \times 10^{-3}$. In contrast, all subsequent spectra from +2.4 to 6.4 d require the presence of a modest amount of lanthanide material ($X_{{\small LN}} \simeq 0.05^{+0.05}_{-0.02}$), produced by a trajectory with Ye = 0.29. This produces lanthanide-induced line blanketing below 6000 Å, and sufficient light r-process elements to explain the persistent strong feature at ∼0.7–1.0 $\mu$m (Sr ii). The composition gives good matches to the observed data, indicating that the strong blue flux deficit results in the near-infrared (NIR) excess. The disjoint in composition between the first epoch and all others indicates either ejecta stratification, or the presence of two distinct components of material. This further supports the ‘two-component’ KN model, and constrains the element composition from nucleosynthetic trajectories. The major uncertainties lie in availability of atomic data and the ionization state of the expanding material.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkL1OwzAUhS0EEqWwMntlSHuvbx0nY1XxU6nAUubIcewmkMaRHZDYeAfekCehtDAzHR2dn-Fj7BJhgpDTdNsFHadx0AaFzI7YCCmVicjT9JiNAEgmmUI8ZWcxPgPAjEQ6Yg_3vrJt23QbPtSWx96aIWju3d6-NK3v_Jvm87UAVBvn-dfHJ19O-HqX9rUffOxrGxrDbe9NHc_ZidNttBe_OmZPN9frxV2yerxdLuarxBDSkFgJJWjKs8wiVUQZIuUlUCZ1CUaiVDNTgVYAQsiUpFLSWadNWQqnXGppzCaHXxN8jMG6og_NVof3AqH4oVHsaRR_NHaDq8PAv_b_db8BAN5i5Q</recordid><startdate>20220719</startdate><enddate>20220719</enddate><creator>Gillanders, J H</creator><creator>Smartt, S J</creator><creator>Sim, S A</creator><creator>Bauswein, A</creator><creator>Goriely, S</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8094-6108</orcidid></search><sort><creationdate>20220719</creationdate><title>Modelling the spectra of the kilonova AT2017gfo – I. The photospheric epochs</title><author>Gillanders, J H ; Smartt, S J ; Sim, S A ; Bauswein, A ; Goriely, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-e50b0a3988e13d3381139b0385ab0c51574cd0a700225635775fefacbb2f7f6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gillanders, J H</creatorcontrib><creatorcontrib>Smartt, S J</creatorcontrib><creatorcontrib>Sim, S A</creatorcontrib><creatorcontrib>Bauswein, A</creatorcontrib><creatorcontrib>Goriely, S</creatorcontrib><collection>Oxford University Press Open Access</collection><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gillanders, J H</au><au>Smartt, S J</au><au>Sim, S A</au><au>Bauswein, A</au><au>Goriely, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling the spectra of the kilonova AT2017gfo – I. The photospheric epochs</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2022-07-19</date><risdate>2022</risdate><volume>515</volume><issue>1</issue><spage>631</spage><epage>651</epage><pages>631-651</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT The kilonova (KN) associated with the binary neutron star (BNS) merger GW170817 is the only known electromagnetic counterpart to a gravitational wave source. Here we produce a sequence of radiative transfer models (using tardis) with updated atomic data, and compare them to accurately calibrated spectra. We use element compositions from nuclear network calculations based on a realistic hydrodynamical simulation of a BNS merger. We show that the blue spectrum at +1.4 d after merger requires a nucleosynthetic trajectory with a high electron fraction. Our best-fitting model is composed entirely of first r-process peak elements (Sr and Zr) and the strong absorption feature is reproduced well by Sr ii absorption. At this epoch, we set an upper limit on the lanthanide mass fraction of $X_{{\small LN}} \lesssim 5 \times 10^{-3}$. In contrast, all subsequent spectra from +2.4 to 6.4 d require the presence of a modest amount of lanthanide material ($X_{{\small LN}} \simeq 0.05^{+0.05}_{-0.02}$), produced by a trajectory with Ye = 0.29. This produces lanthanide-induced line blanketing below 6000 Å, and sufficient light r-process elements to explain the persistent strong feature at ∼0.7–1.0 $\mu$m (Sr ii). The composition gives good matches to the observed data, indicating that the strong blue flux deficit results in the near-infrared (NIR) excess. The disjoint in composition between the first epoch and all others indicates either ejecta stratification, or the presence of two distinct components of material. This further supports the ‘two-component’ KN model, and constrains the element composition from nucleosynthetic trajectories. The major uncertainties lie in availability of atomic data and the ionization state of the expanding material.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stac1258</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8094-6108</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2022-07, Vol.515 (1), p.631-651
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stac1258
source Oxford University Press Open Access; EZB Electronic Journals Library
title Modelling the spectra of the kilonova AT2017gfo – I. The photospheric epochs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20the%20spectra%20of%20the%20kilonova%20AT2017gfo%20%E2%80%93%20I.%20The%20photospheric%20epochs&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Gillanders,%20J%20H&rft.date=2022-07-19&rft.volume=515&rft.issue=1&rft.spage=631&rft.epage=651&rft.pages=631-651&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stac1258&rft_dat=%3Coup_cross%3E10.1093/mnras/stac1258%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-e50b0a3988e13d3381139b0385ab0c51574cd0a700225635775fefacbb2f7f6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stac1258&rfr_iscdi=true