Loading…

Hot-mode accretion and the physics of thin-disc galaxy formation

ABSTRACT We use FIRE simulations to study disc formation in z ∼ 0, Milky Way-mass galaxies, and conclude that a key ingredient for the formation of thin stellar discs is the ability for accreting gas to develop an aligned angular momentum distribution via internal cancellation prior to joining the g...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2022-07, Vol.514 (4), p.5056-5073
Main Authors: Hafen, Zachary, Stern, Jonathan, Bullock, James, Gurvich, Alexander B, Yu, Sijie, Faucher-Giguère, Claude-André, Fielding, Drummond B, Anglés-Alcázar, Daniel, Quataert, Eliot, Wetzel, Andrew, Starkenburg, Tjitske, Boylan-Kolchin, Michael, Moreno, Jorge, Feldmann, Robert, El-Badry, Kareem, Chan, T K, Trapp, Cameron, Kereš, Dušan, Hopkins, Philip F
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c273t-c058814147da1aba54ec597ea9b9770de089f710014f936b11fd263807a6d9563
cites cdi_FETCH-LOGICAL-c273t-c058814147da1aba54ec597ea9b9770de089f710014f936b11fd263807a6d9563
container_end_page 5073
container_issue 4
container_start_page 5056
container_title Monthly notices of the Royal Astronomical Society
container_volume 514
creator Hafen, Zachary
Stern, Jonathan
Bullock, James
Gurvich, Alexander B
Yu, Sijie
Faucher-Giguère, Claude-André
Fielding, Drummond B
Anglés-Alcázar, Daniel
Quataert, Eliot
Wetzel, Andrew
Starkenburg, Tjitske
Boylan-Kolchin, Michael
Moreno, Jorge
Feldmann, Robert
El-Badry, Kareem
Chan, T K
Trapp, Cameron
Kereš, Dušan
Hopkins, Philip F
description ABSTRACT We use FIRE simulations to study disc formation in z ∼ 0, Milky Way-mass galaxies, and conclude that a key ingredient for the formation of thin stellar discs is the ability for accreting gas to develop an aligned angular momentum distribution via internal cancellation prior to joining the galaxy. Among galaxies with a high fraction ($\gt 70{{\ \rm per\ cent}}$) of their young stars in a thin disc (h/R ∼ 0.1), we find that: (i) hot, virial-temperature gas dominates the inflowing gas mass on halo scales (≳20 kpc), with radiative losses offset by compression heating; (ii) this hot accretion proceeds until angular momentum support slows inward motion, at which point the gas cools to $\lesssim 10^4\, {\rm K}$; (iii) prior to cooling, the accreting gas develops an angular momentum distribution that is aligned with the galaxy disc, and while cooling transitions from a quasi-spherical spatial configuration to a more-flattened, disc-like configuration. We show that the existence of this ‘rotating cooling flow’ accretion mode is strongly correlated with the fraction of stars forming in a thin disc, using a sample of 17 z ∼ 0 galaxies spanning a halo mass range of 1010.5 M⊙ ≲ Mh ≲ 1012 M⊙ and stellar mass range of 108 M⊙ ≲ M⋆ ≲ 1011 M⊙. Notably, galaxies with a thick disc or irregular morphology do not undergo significant angular momentum alignment of gas prior to accretion and show no correspondence between halo gas cooling and flattening. Our results suggest that rotating cooling flows (or, more generally, rotating subsonic flows) that become coherent and angular momentum-supported prior to accretion on to the galaxy are likely a necessary condition for the formation of thin, star-forming disc galaxies in a ΛCDM universe.
doi_str_mv 10.1093/mnras/stac1603
format article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stac1603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stac1603</oup_id><sourcerecordid>10.1093/mnras/stac1603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-c058814147da1aba54ec597ea9b9770de089f710014f936b11fd263807a6d9563</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqWwMmdlcHtvnNjxCBW0SJVYYI5u_UODmriyg0Teps_SJ6OlMDMdHel8Z_gYu0WYIGgxbbtIaZp6MihBnLERClnyXEt5zkYAouSVQrxkVyl9AEAhcjliD4vQ8zZYl5Ex0fVN6DLqbNavXbZdD6kxKQv-UJuO2yaZ_e6dNvQ17Hc-xJaO-2t24WmT3M1vjtnb0-PrbMGXL_Pn2f2Sm1yJnhsoqwoLLJQlpBWVhTOlVo70SisF1kGlvUIALLwWcoXobS5FBYqk1aUUYzY5_ZoYUorO19vYtBSHGqE-Gqh_DNR_Bg7A3QkIn9v_tt-iOGB7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hot-mode accretion and the physics of thin-disc galaxy formation</title><source>Oxford Academic Journals (Open Access)</source><creator>Hafen, Zachary ; Stern, Jonathan ; Bullock, James ; Gurvich, Alexander B ; Yu, Sijie ; Faucher-Giguère, Claude-André ; Fielding, Drummond B ; Anglés-Alcázar, Daniel ; Quataert, Eliot ; Wetzel, Andrew ; Starkenburg, Tjitske ; Boylan-Kolchin, Michael ; Moreno, Jorge ; Feldmann, Robert ; El-Badry, Kareem ; Chan, T K ; Trapp, Cameron ; Kereš, Dušan ; Hopkins, Philip F</creator><creatorcontrib>Hafen, Zachary ; Stern, Jonathan ; Bullock, James ; Gurvich, Alexander B ; Yu, Sijie ; Faucher-Giguère, Claude-André ; Fielding, Drummond B ; Anglés-Alcázar, Daniel ; Quataert, Eliot ; Wetzel, Andrew ; Starkenburg, Tjitske ; Boylan-Kolchin, Michael ; Moreno, Jorge ; Feldmann, Robert ; El-Badry, Kareem ; Chan, T K ; Trapp, Cameron ; Kereš, Dušan ; Hopkins, Philip F</creatorcontrib><description>ABSTRACT We use FIRE simulations to study disc formation in z ∼ 0, Milky Way-mass galaxies, and conclude that a key ingredient for the formation of thin stellar discs is the ability for accreting gas to develop an aligned angular momentum distribution via internal cancellation prior to joining the galaxy. Among galaxies with a high fraction ($\gt 70{{\ \rm per\ cent}}$) of their young stars in a thin disc (h/R ∼ 0.1), we find that: (i) hot, virial-temperature gas dominates the inflowing gas mass on halo scales (≳20 kpc), with radiative losses offset by compression heating; (ii) this hot accretion proceeds until angular momentum support slows inward motion, at which point the gas cools to $\lesssim 10^4\, {\rm K}$; (iii) prior to cooling, the accreting gas develops an angular momentum distribution that is aligned with the galaxy disc, and while cooling transitions from a quasi-spherical spatial configuration to a more-flattened, disc-like configuration. We show that the existence of this ‘rotating cooling flow’ accretion mode is strongly correlated with the fraction of stars forming in a thin disc, using a sample of 17 z ∼ 0 galaxies spanning a halo mass range of 1010.5 M⊙ ≲ Mh ≲ 1012 M⊙ and stellar mass range of 108 M⊙ ≲ M⋆ ≲ 1011 M⊙. Notably, galaxies with a thick disc or irregular morphology do not undergo significant angular momentum alignment of gas prior to accretion and show no correspondence between halo gas cooling and flattening. Our results suggest that rotating cooling flows (or, more generally, rotating subsonic flows) that become coherent and angular momentum-supported prior to accretion on to the galaxy are likely a necessary condition for the formation of thin, star-forming disc galaxies in a ΛCDM universe.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stac1603</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2022-07, Vol.514 (4), p.5056-5073</ispartof><rights>2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-c058814147da1aba54ec597ea9b9770de089f710014f936b11fd263807a6d9563</citedby><cites>FETCH-LOGICAL-c273t-c058814147da1aba54ec597ea9b9770de089f710014f936b11fd263807a6d9563</cites><orcidid>0000-0003-4298-5082 ; 0000-0002-6145-3674 ; 0000-0001-7813-0268 ; 0000-0001-7326-1736 ; 0000-0002-4900-6628 ; 0000-0002-9604-343X ; 0000-0002-7541-9565 ; 0000-0003-3806-8548 ; 0000-0003-2544-054X ; 0000-0002-1019-0341 ; 0000-0002-1109-1919 ; 0000-0003-1997-2996 ; 0000-0002-6871-1752 ; 0000-0003-3729-1684 ; 0000-0003-0603-8942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stac1603$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Hafen, Zachary</creatorcontrib><creatorcontrib>Stern, Jonathan</creatorcontrib><creatorcontrib>Bullock, James</creatorcontrib><creatorcontrib>Gurvich, Alexander B</creatorcontrib><creatorcontrib>Yu, Sijie</creatorcontrib><creatorcontrib>Faucher-Giguère, Claude-André</creatorcontrib><creatorcontrib>Fielding, Drummond B</creatorcontrib><creatorcontrib>Anglés-Alcázar, Daniel</creatorcontrib><creatorcontrib>Quataert, Eliot</creatorcontrib><creatorcontrib>Wetzel, Andrew</creatorcontrib><creatorcontrib>Starkenburg, Tjitske</creatorcontrib><creatorcontrib>Boylan-Kolchin, Michael</creatorcontrib><creatorcontrib>Moreno, Jorge</creatorcontrib><creatorcontrib>Feldmann, Robert</creatorcontrib><creatorcontrib>El-Badry, Kareem</creatorcontrib><creatorcontrib>Chan, T K</creatorcontrib><creatorcontrib>Trapp, Cameron</creatorcontrib><creatorcontrib>Kereš, Dušan</creatorcontrib><creatorcontrib>Hopkins, Philip F</creatorcontrib><title>Hot-mode accretion and the physics of thin-disc galaxy formation</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT We use FIRE simulations to study disc formation in z ∼ 0, Milky Way-mass galaxies, and conclude that a key ingredient for the formation of thin stellar discs is the ability for accreting gas to develop an aligned angular momentum distribution via internal cancellation prior to joining the galaxy. Among galaxies with a high fraction ($\gt 70{{\ \rm per\ cent}}$) of their young stars in a thin disc (h/R ∼ 0.1), we find that: (i) hot, virial-temperature gas dominates the inflowing gas mass on halo scales (≳20 kpc), with radiative losses offset by compression heating; (ii) this hot accretion proceeds until angular momentum support slows inward motion, at which point the gas cools to $\lesssim 10^4\, {\rm K}$; (iii) prior to cooling, the accreting gas develops an angular momentum distribution that is aligned with the galaxy disc, and while cooling transitions from a quasi-spherical spatial configuration to a more-flattened, disc-like configuration. We show that the existence of this ‘rotating cooling flow’ accretion mode is strongly correlated with the fraction of stars forming in a thin disc, using a sample of 17 z ∼ 0 galaxies spanning a halo mass range of 1010.5 M⊙ ≲ Mh ≲ 1012 M⊙ and stellar mass range of 108 M⊙ ≲ M⋆ ≲ 1011 M⊙. Notably, galaxies with a thick disc or irregular morphology do not undergo significant angular momentum alignment of gas prior to accretion and show no correspondence between halo gas cooling and flattening. Our results suggest that rotating cooling flows (or, more generally, rotating subsonic flows) that become coherent and angular momentum-supported prior to accretion on to the galaxy are likely a necessary condition for the formation of thin, star-forming disc galaxies in a ΛCDM universe.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EEqWwMmdlcHtvnNjxCBW0SJVYYI5u_UODmriyg0Teps_SJ6OlMDMdHel8Z_gYu0WYIGgxbbtIaZp6MihBnLERClnyXEt5zkYAouSVQrxkVyl9AEAhcjliD4vQ8zZYl5Ex0fVN6DLqbNavXbZdD6kxKQv-UJuO2yaZ_e6dNvQ17Hc-xJaO-2t24WmT3M1vjtnb0-PrbMGXL_Pn2f2Sm1yJnhsoqwoLLJQlpBWVhTOlVo70SisF1kGlvUIALLwWcoXobS5FBYqk1aUUYzY5_ZoYUorO19vYtBSHGqE-Gqh_DNR_Bg7A3QkIn9v_tt-iOGB7</recordid><startdate>20220707</startdate><enddate>20220707</enddate><creator>Hafen, Zachary</creator><creator>Stern, Jonathan</creator><creator>Bullock, James</creator><creator>Gurvich, Alexander B</creator><creator>Yu, Sijie</creator><creator>Faucher-Giguère, Claude-André</creator><creator>Fielding, Drummond B</creator><creator>Anglés-Alcázar, Daniel</creator><creator>Quataert, Eliot</creator><creator>Wetzel, Andrew</creator><creator>Starkenburg, Tjitske</creator><creator>Boylan-Kolchin, Michael</creator><creator>Moreno, Jorge</creator><creator>Feldmann, Robert</creator><creator>El-Badry, Kareem</creator><creator>Chan, T K</creator><creator>Trapp, Cameron</creator><creator>Kereš, Dušan</creator><creator>Hopkins, Philip F</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4298-5082</orcidid><orcidid>https://orcid.org/0000-0002-6145-3674</orcidid><orcidid>https://orcid.org/0000-0001-7813-0268</orcidid><orcidid>https://orcid.org/0000-0001-7326-1736</orcidid><orcidid>https://orcid.org/0000-0002-4900-6628</orcidid><orcidid>https://orcid.org/0000-0002-9604-343X</orcidid><orcidid>https://orcid.org/0000-0002-7541-9565</orcidid><orcidid>https://orcid.org/0000-0003-3806-8548</orcidid><orcidid>https://orcid.org/0000-0003-2544-054X</orcidid><orcidid>https://orcid.org/0000-0002-1019-0341</orcidid><orcidid>https://orcid.org/0000-0002-1109-1919</orcidid><orcidid>https://orcid.org/0000-0003-1997-2996</orcidid><orcidid>https://orcid.org/0000-0002-6871-1752</orcidid><orcidid>https://orcid.org/0000-0003-3729-1684</orcidid><orcidid>https://orcid.org/0000-0003-0603-8942</orcidid></search><sort><creationdate>20220707</creationdate><title>Hot-mode accretion and the physics of thin-disc galaxy formation</title><author>Hafen, Zachary ; Stern, Jonathan ; Bullock, James ; Gurvich, Alexander B ; Yu, Sijie ; Faucher-Giguère, Claude-André ; Fielding, Drummond B ; Anglés-Alcázar, Daniel ; Quataert, Eliot ; Wetzel, Andrew ; Starkenburg, Tjitske ; Boylan-Kolchin, Michael ; Moreno, Jorge ; Feldmann, Robert ; El-Badry, Kareem ; Chan, T K ; Trapp, Cameron ; Kereš, Dušan ; Hopkins, Philip F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-c058814147da1aba54ec597ea9b9770de089f710014f936b11fd263807a6d9563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hafen, Zachary</creatorcontrib><creatorcontrib>Stern, Jonathan</creatorcontrib><creatorcontrib>Bullock, James</creatorcontrib><creatorcontrib>Gurvich, Alexander B</creatorcontrib><creatorcontrib>Yu, Sijie</creatorcontrib><creatorcontrib>Faucher-Giguère, Claude-André</creatorcontrib><creatorcontrib>Fielding, Drummond B</creatorcontrib><creatorcontrib>Anglés-Alcázar, Daniel</creatorcontrib><creatorcontrib>Quataert, Eliot</creatorcontrib><creatorcontrib>Wetzel, Andrew</creatorcontrib><creatorcontrib>Starkenburg, Tjitske</creatorcontrib><creatorcontrib>Boylan-Kolchin, Michael</creatorcontrib><creatorcontrib>Moreno, Jorge</creatorcontrib><creatorcontrib>Feldmann, Robert</creatorcontrib><creatorcontrib>El-Badry, Kareem</creatorcontrib><creatorcontrib>Chan, T K</creatorcontrib><creatorcontrib>Trapp, Cameron</creatorcontrib><creatorcontrib>Kereš, Dušan</creatorcontrib><creatorcontrib>Hopkins, Philip F</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hafen, Zachary</au><au>Stern, Jonathan</au><au>Bullock, James</au><au>Gurvich, Alexander B</au><au>Yu, Sijie</au><au>Faucher-Giguère, Claude-André</au><au>Fielding, Drummond B</au><au>Anglés-Alcázar, Daniel</au><au>Quataert, Eliot</au><au>Wetzel, Andrew</au><au>Starkenburg, Tjitske</au><au>Boylan-Kolchin, Michael</au><au>Moreno, Jorge</au><au>Feldmann, Robert</au><au>El-Badry, Kareem</au><au>Chan, T K</au><au>Trapp, Cameron</au><au>Kereš, Dušan</au><au>Hopkins, Philip F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hot-mode accretion and the physics of thin-disc galaxy formation</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2022-07-07</date><risdate>2022</risdate><volume>514</volume><issue>4</issue><spage>5056</spage><epage>5073</epage><pages>5056-5073</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT We use FIRE simulations to study disc formation in z ∼ 0, Milky Way-mass galaxies, and conclude that a key ingredient for the formation of thin stellar discs is the ability for accreting gas to develop an aligned angular momentum distribution via internal cancellation prior to joining the galaxy. Among galaxies with a high fraction ($\gt 70{{\ \rm per\ cent}}$) of their young stars in a thin disc (h/R ∼ 0.1), we find that: (i) hot, virial-temperature gas dominates the inflowing gas mass on halo scales (≳20 kpc), with radiative losses offset by compression heating; (ii) this hot accretion proceeds until angular momentum support slows inward motion, at which point the gas cools to $\lesssim 10^4\, {\rm K}$; (iii) prior to cooling, the accreting gas develops an angular momentum distribution that is aligned with the galaxy disc, and while cooling transitions from a quasi-spherical spatial configuration to a more-flattened, disc-like configuration. We show that the existence of this ‘rotating cooling flow’ accretion mode is strongly correlated with the fraction of stars forming in a thin disc, using a sample of 17 z ∼ 0 galaxies spanning a halo mass range of 1010.5 M⊙ ≲ Mh ≲ 1012 M⊙ and stellar mass range of 108 M⊙ ≲ M⋆ ≲ 1011 M⊙. Notably, galaxies with a thick disc or irregular morphology do not undergo significant angular momentum alignment of gas prior to accretion and show no correspondence between halo gas cooling and flattening. Our results suggest that rotating cooling flows (or, more generally, rotating subsonic flows) that become coherent and angular momentum-supported prior to accretion on to the galaxy are likely a necessary condition for the formation of thin, star-forming disc galaxies in a ΛCDM universe.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stac1603</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4298-5082</orcidid><orcidid>https://orcid.org/0000-0002-6145-3674</orcidid><orcidid>https://orcid.org/0000-0001-7813-0268</orcidid><orcidid>https://orcid.org/0000-0001-7326-1736</orcidid><orcidid>https://orcid.org/0000-0002-4900-6628</orcidid><orcidid>https://orcid.org/0000-0002-9604-343X</orcidid><orcidid>https://orcid.org/0000-0002-7541-9565</orcidid><orcidid>https://orcid.org/0000-0003-3806-8548</orcidid><orcidid>https://orcid.org/0000-0003-2544-054X</orcidid><orcidid>https://orcid.org/0000-0002-1019-0341</orcidid><orcidid>https://orcid.org/0000-0002-1109-1919</orcidid><orcidid>https://orcid.org/0000-0003-1997-2996</orcidid><orcidid>https://orcid.org/0000-0002-6871-1752</orcidid><orcidid>https://orcid.org/0000-0003-3729-1684</orcidid><orcidid>https://orcid.org/0000-0003-0603-8942</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2022-07, Vol.514 (4), p.5056-5073
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stac1603
source Oxford Academic Journals (Open Access)
title Hot-mode accretion and the physics of thin-disc galaxy formation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hot-mode%20accretion%20and%20the%20physics%20of%20thin-disc%C2%A0galaxy%C2%A0formation&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Hafen,%20Zachary&rft.date=2022-07-07&rft.volume=514&rft.issue=4&rft.spage=5056&rft.epage=5073&rft.pages=5056-5073&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stac1603&rft_dat=%3Coup_TOX%3E10.1093/mnras/stac1603%3C/oup_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-c058814147da1aba54ec597ea9b9770de089f710014f936b11fd263807a6d9563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stac1603&rfr_iscdi=true