Loading…

Detection of anisotropic satellite quenching in galaxy clusters up to z ∼ 1

Satellite galaxies in the cluster environment are more likely to be quenched than galaxies in the general field. Recently, it has been reported that satellite galaxy quenching depends on the orientation relative to their central galaxies: satellites along the major axis of centrals are more likely t...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2023-02, Vol.519 (1), p.13-25
Main Authors: Ando, Makoto, Shimasaku, Kazuhiro, Ito, Kei
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Satellite galaxies in the cluster environment are more likely to be quenched than galaxies in the general field. Recently, it has been reported that satellite galaxy quenching depends on the orientation relative to their central galaxies: satellites along the major axis of centrals are more likely to be quenched than those along the minor axis. In this paper, we report a detection of such anisotropic quenching up to z ∼ 1 based on a large optically selected cluster catalogue constructed from the Hyper Suprime-Cam Subaru Strategic Program. We calculate the quiescent satellite galaxy fraction as a function of orientation angle measured from the major axis of central galaxies and find that the quiescent fractions at 0.25 < z < 1 are reasonably fitted by sinusoidal functions with amplitudes of a few per cent. Anisotropy is clearer in inner regions (r200m). We also confirm that the observed anisotropy cannot be explained by differences in local galaxy density or stellar mass distribution along the two axes. Quiescent fraction excesses between the two axes suggest that the quenching efficiency contributing to the anisotropy is almost independent of stellar mass, at least down to our stellar mass limit of $M_{*}=1\times 10^{10}\, {\rm M}_{\odot }$. Finally, we argue that the physical origins of the observed anisotropy should have shorter quenching time-scales than $\sim 1\, \mathrm{Gyr}$, like ram-pressure stripping, because, for anisotropic quenching to be observed, satellites must be quenched before their initial orientation angles are significantly changed.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stac3251