Loading…

Three dimensional magnetorotational core-collapse supernova explosions of a 39 solar mass progenitor star

ABSTRACT We perform three-dimensional simulations of magnetorotational supernovae using a $39\, {\rm M}_{\odot }$ progenitor star with two different initial magnetic field strengths of 1010  and 1012 G in the core. Both models rapidly undergo shock revival, and their explosion energies asymptote wit...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2023-05, Vol.522 (4), p.6070-6086
Main Authors: Powell, Jade, Müller, Bernhard, Aguilera-Dena, David R, Langer, Norbert
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-c67ad8f42a4f4c7db2e7aa52bf4034449490277a6fbb1139b054e5af4d9efdc73
cites cdi_FETCH-LOGICAL-c313t-c67ad8f42a4f4c7db2e7aa52bf4034449490277a6fbb1139b054e5af4d9efdc73
container_end_page 6086
container_issue 4
container_start_page 6070
container_title Monthly notices of the Royal Astronomical Society
container_volume 522
creator Powell, Jade
Müller, Bernhard
Aguilera-Dena, David R
Langer, Norbert
description ABSTRACT We perform three-dimensional simulations of magnetorotational supernovae using a $39\, {\rm M}_{\odot }$ progenitor star with two different initial magnetic field strengths of 1010  and 1012 G in the core. Both models rapidly undergo shock revival, and their explosion energies asymptote within a few hundred milliseconds to values of ≳2 × 1051 erg after conservatively correcting for the binding energy of the envelope. Magnetically collimated, non-relativistic jets form in both models, though the jets are subject to non-axisymmetric instabilities. The jets do not appear crucial for driving the explosion, as they only emerge once the shock has already expanded considerably. Our simulations predict moderate neutron star kicks of about 150 km s−1, no spin-kick alignment, and rapid early spin-down that would result in birth periods of about 20 ms, too slow to power an energetic gamma-ray burst jet. More than $0.2\, {\rm M}_\odot$ of iron-group material is ejected, but we estimate that the mass of ejected 56Ni will be considerably smaller as the bulk of this material is neutron-rich. Explosive burning does not contribute appreciable amounts of 56Ni because the burned material originates from the slightly neutron-rich silicon shell. The iron-group ejecta also showed no pronounced bipolar geometry by the end of the simulations. The models thus do not immediately fit the characteristics of observed hypernovae, but may be representative of other transients with moderately high explosion energies. The gravitational-wave emission reaches high frequencies of up to 2000 Hz and amplitudes of over 100 cm. The gravitational-wave emission is detectable out to distances of ∼4 Mpc in the planned Cosmic Explorer detector.
doi_str_mv 10.1093/mnras/stad1292
format article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stad1292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stad1292</oup_id><sourcerecordid>10.1093/mnras/stad1292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-c67ad8f42a4f4c7db2e7aa52bf4034449490277a6fbb1139b054e5af4d9efdc73</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQQBdRsFavnvfqIe1-Jds9SlErFLzUc5hsZmskyYadVPTfm1o9exoY5j2Gx9itFAspnF52fQJa0gi1VE6dsZnURZ4pVxTnbCaEzrOVlfKSXRG9CyGMVsWMNbu3hMjrpsOemthDyzvY9zjGFEcYTxsfE2Y-ti0MhJwOA6Y-fgDHz6GNR4p4DBy4dpxiC2lSEPEhxT32zWTi01Ppml0EaAlvfuecvT4-7NabbPvy9Ly-32ZeSz1mvrBQr4JRYILxtq4UWoBcVcEIbYxxxgllLRShqqTUrhK5wRyCqR2G2ls9Z4uT16dIlDCUQ2o6SF-lFOUxVPkTqvwLNQF3JyAehv9uvwEUEG-k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Three dimensional magnetorotational core-collapse supernova explosions of a 39 solar mass progenitor star</title><source>Open Access: Oxford University Press Open Journals</source><source>EZB Electronic Journals Library</source><creator>Powell, Jade ; Müller, Bernhard ; Aguilera-Dena, David R ; Langer, Norbert</creator><creatorcontrib>Powell, Jade ; Müller, Bernhard ; Aguilera-Dena, David R ; Langer, Norbert</creatorcontrib><description>ABSTRACT We perform three-dimensional simulations of magnetorotational supernovae using a $39\, {\rm M}_{\odot }$ progenitor star with two different initial magnetic field strengths of 1010  and 1012 G in the core. Both models rapidly undergo shock revival, and their explosion energies asymptote within a few hundred milliseconds to values of ≳2 × 1051 erg after conservatively correcting for the binding energy of the envelope. Magnetically collimated, non-relativistic jets form in both models, though the jets are subject to non-axisymmetric instabilities. The jets do not appear crucial for driving the explosion, as they only emerge once the shock has already expanded considerably. Our simulations predict moderate neutron star kicks of about 150 km s−1, no spin-kick alignment, and rapid early spin-down that would result in birth periods of about 20 ms, too slow to power an energetic gamma-ray burst jet. More than $0.2\, {\rm M}_\odot$ of iron-group material is ejected, but we estimate that the mass of ejected 56Ni will be considerably smaller as the bulk of this material is neutron-rich. Explosive burning does not contribute appreciable amounts of 56Ni because the burned material originates from the slightly neutron-rich silicon shell. The iron-group ejecta also showed no pronounced bipolar geometry by the end of the simulations. The models thus do not immediately fit the characteristics of observed hypernovae, but may be representative of other transients with moderately high explosion energies. The gravitational-wave emission reaches high frequencies of up to 2000 Hz and amplitudes of over 100 cm. The gravitational-wave emission is detectable out to distances of ∼4 Mpc in the planned Cosmic Explorer detector.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stad1292</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2023-05, Vol.522 (4), p.6070-6086</ispartof><rights>2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-c67ad8f42a4f4c7db2e7aa52bf4034449490277a6fbb1139b054e5af4d9efdc73</citedby><cites>FETCH-LOGICAL-c313t-c67ad8f42a4f4c7db2e7aa52bf4034449490277a6fbb1139b054e5af4d9efdc73</cites><orcidid>0000-0002-1357-4164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids></links><search><creatorcontrib>Powell, Jade</creatorcontrib><creatorcontrib>Müller, Bernhard</creatorcontrib><creatorcontrib>Aguilera-Dena, David R</creatorcontrib><creatorcontrib>Langer, Norbert</creatorcontrib><title>Three dimensional magnetorotational core-collapse supernova explosions of a 39 solar mass progenitor star</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT We perform three-dimensional simulations of magnetorotational supernovae using a $39\, {\rm M}_{\odot }$ progenitor star with two different initial magnetic field strengths of 1010  and 1012 G in the core. Both models rapidly undergo shock revival, and their explosion energies asymptote within a few hundred milliseconds to values of ≳2 × 1051 erg after conservatively correcting for the binding energy of the envelope. Magnetically collimated, non-relativistic jets form in both models, though the jets are subject to non-axisymmetric instabilities. The jets do not appear crucial for driving the explosion, as they only emerge once the shock has already expanded considerably. Our simulations predict moderate neutron star kicks of about 150 km s−1, no spin-kick alignment, and rapid early spin-down that would result in birth periods of about 20 ms, too slow to power an energetic gamma-ray burst jet. More than $0.2\, {\rm M}_\odot$ of iron-group material is ejected, but we estimate that the mass of ejected 56Ni will be considerably smaller as the bulk of this material is neutron-rich. Explosive burning does not contribute appreciable amounts of 56Ni because the burned material originates from the slightly neutron-rich silicon shell. The iron-group ejecta also showed no pronounced bipolar geometry by the end of the simulations. The models thus do not immediately fit the characteristics of observed hypernovae, but may be representative of other transients with moderately high explosion energies. The gravitational-wave emission reaches high frequencies of up to 2000 Hz and amplitudes of over 100 cm. The gravitational-wave emission is detectable out to distances of ∼4 Mpc in the planned Cosmic Explorer detector.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkE1Lw0AQQBdRsFavnvfqIe1-Jds9SlErFLzUc5hsZmskyYadVPTfm1o9exoY5j2Gx9itFAspnF52fQJa0gi1VE6dsZnURZ4pVxTnbCaEzrOVlfKSXRG9CyGMVsWMNbu3hMjrpsOemthDyzvY9zjGFEcYTxsfE2Y-ti0MhJwOA6Y-fgDHz6GNR4p4DBy4dpxiC2lSEPEhxT32zWTi01Ppml0EaAlvfuecvT4-7NabbPvy9Ly-32ZeSz1mvrBQr4JRYILxtq4UWoBcVcEIbYxxxgllLRShqqTUrhK5wRyCqR2G2ls9Z4uT16dIlDCUQ2o6SF-lFOUxVPkTqvwLNQF3JyAehv9uvwEUEG-k</recordid><startdate>20230511</startdate><enddate>20230511</enddate><creator>Powell, Jade</creator><creator>Müller, Bernhard</creator><creator>Aguilera-Dena, David R</creator><creator>Langer, Norbert</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1357-4164</orcidid></search><sort><creationdate>20230511</creationdate><title>Three dimensional magnetorotational core-collapse supernova explosions of a 39 solar mass progenitor star</title><author>Powell, Jade ; Müller, Bernhard ; Aguilera-Dena, David R ; Langer, Norbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-c67ad8f42a4f4c7db2e7aa52bf4034449490277a6fbb1139b054e5af4d9efdc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Powell, Jade</creatorcontrib><creatorcontrib>Müller, Bernhard</creatorcontrib><creatorcontrib>Aguilera-Dena, David R</creatorcontrib><creatorcontrib>Langer, Norbert</creatorcontrib><collection>Open Access: Oxford University Press Open Journals</collection><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Powell, Jade</au><au>Müller, Bernhard</au><au>Aguilera-Dena, David R</au><au>Langer, Norbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three dimensional magnetorotational core-collapse supernova explosions of a 39 solar mass progenitor star</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2023-05-11</date><risdate>2023</risdate><volume>522</volume><issue>4</issue><spage>6070</spage><epage>6086</epage><pages>6070-6086</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT We perform three-dimensional simulations of magnetorotational supernovae using a $39\, {\rm M}_{\odot }$ progenitor star with two different initial magnetic field strengths of 1010  and 1012 G in the core. Both models rapidly undergo shock revival, and their explosion energies asymptote within a few hundred milliseconds to values of ≳2 × 1051 erg after conservatively correcting for the binding energy of the envelope. Magnetically collimated, non-relativistic jets form in both models, though the jets are subject to non-axisymmetric instabilities. The jets do not appear crucial for driving the explosion, as they only emerge once the shock has already expanded considerably. Our simulations predict moderate neutron star kicks of about 150 km s−1, no spin-kick alignment, and rapid early spin-down that would result in birth periods of about 20 ms, too slow to power an energetic gamma-ray burst jet. More than $0.2\, {\rm M}_\odot$ of iron-group material is ejected, but we estimate that the mass of ejected 56Ni will be considerably smaller as the bulk of this material is neutron-rich. Explosive burning does not contribute appreciable amounts of 56Ni because the burned material originates from the slightly neutron-rich silicon shell. The iron-group ejecta also showed no pronounced bipolar geometry by the end of the simulations. The models thus do not immediately fit the characteristics of observed hypernovae, but may be representative of other transients with moderately high explosion energies. The gravitational-wave emission reaches high frequencies of up to 2000 Hz and amplitudes of over 100 cm. The gravitational-wave emission is detectable out to distances of ∼4 Mpc in the planned Cosmic Explorer detector.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stad1292</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1357-4164</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2023-05, Vol.522 (4), p.6070-6086
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stad1292
source Open Access: Oxford University Press Open Journals; EZB Electronic Journals Library
title Three dimensional magnetorotational core-collapse supernova explosions of a 39 solar mass progenitor star
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20dimensional%20magnetorotational%20core-collapse%20supernova%20explosions%20of%20a%2039%20solar%20mass%20progenitor%20star&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Powell,%20Jade&rft.date=2023-05-11&rft.volume=522&rft.issue=4&rft.spage=6070&rft.epage=6086&rft.pages=6070-6086&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stad1292&rft_dat=%3Coup_cross%3E10.1093/mnras/stad1292%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-c67ad8f42a4f4c7db2e7aa52bf4034449490277a6fbb1139b054e5af4d9efdc73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stad1292&rfr_iscdi=true