Loading…

Carbonates and ices in the z = 0.89 galaxy-absorber towards PKS 1830–211 and within star-forming regions of the Milky Way

ABSTRACT A pair of 6.0 and 6.9 μm absorption features are frequently observed in Milky Way (MW) molecular-clouds and YSOs; they also occur in the z = 0.886 rest-frame of a molecule-rich spiral galaxy obscuring blazar PKS 1830–211. I calibrate χ2-fitting methods, which match observations with two or...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2023-07, Vol.524 (2), p.2446-2459
Main Author: Bowey, Janet E
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT A pair of 6.0 and 6.9 μm absorption features are frequently observed in Milky Way (MW) molecular-clouds and YSOs; they also occur in the z = 0.886 rest-frame of a molecule-rich spiral galaxy obscuring blazar PKS 1830–211. I calibrate χ2-fitting methods, which match observations with two or three laboratory spectra. The 6.0-μm component is dominated by H2O ice, as expected. Included MW sources were selected using opacity criteria which limit the range of explored H2O-ice column densities to 1.6–2.4 × 1018 molecules cm−2, while the H2O-ice density in the galaxy absorber is (2.7 ± 0.5) × 1018 molecules cm−2. CH3OH ice and / or small (< 0.1-μm-sized) Ca- and Mg-bearing carbonates contribute at 6.9 μm. The 41 per cent CH3OH:H2O molecular ratio in the PKS 1830–211 absorber is significantly higher than in the molecular cloud towards Taurus-Elias 16 (
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stad1928