Loading…

3D simulations of magnetoconvection in a rapidly rotating supernova progenitor

ABSTRACT We present a first 3D magnetohydrodynamic (MHD) simulation of oxygen, neon, and carbon shell burning in a rapidly rotating $16\hbox{-}\mathrm{M}_\odot$ core-collapse supernova progenitor. We also run a purely hydrodynamic simulation for comparison. After $\mathord \approx 180\mathrm{s}$ ($\...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2023-10, Vol.526 (4), p.5249-5262
Main Authors: Varma, Vishnu, Müller, Bernhard
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-6d9d2c482d638a1e713bc50a1049362ee9f8e4ef0e01ec8fd604ff66499603263
cites cdi_FETCH-LOGICAL-c313t-6d9d2c482d638a1e713bc50a1049362ee9f8e4ef0e01ec8fd604ff66499603263
container_end_page 5262
container_issue 4
container_start_page 5249
container_title Monthly notices of the Royal Astronomical Society
container_volume 526
creator Varma, Vishnu
Müller, Bernhard
description ABSTRACT We present a first 3D magnetohydrodynamic (MHD) simulation of oxygen, neon, and carbon shell burning in a rapidly rotating $16\hbox{-}\mathrm{M}_\odot$ core-collapse supernova progenitor. We also run a purely hydrodynamic simulation for comparison. After $\mathord \approx 180\mathrm{s}$ ($\mathord \approx$ 15 and 7 convective turnovers, respectively), the magnetic fields in the oxygen and neon shells achieve saturation at 1011 and 5 × 1010 G. The strong Maxwell stresses become comparable to the radial Reynolds stresses and eventually suppress convection. The suppression of mixing by convection and shear instabilities results in the depletion of fuel at the base of the burning regions, so that the burning shell eventually move outward to cooler regions, thus reducing the energy generation rate. The strong magnetic fields efficiently transport angular momentum outwards, quickly spinning down the rapidly rotating convective oxygen and neon shells and forcing them into rigid rotation. The hydrodynamic model shows complicated redistribution of angular momentum and develops regions of retrograde rotation at the base of the convective shells. We discuss implications of our results for stellar evolution and for the subsequent core-collapse supernova. The rapid redistribution of angular momentum in the MHD model casts some doubt on the possibility of retaining significant core angular momentum for explosions driven by millisecond magnetars. However, findings from multidimensional models remain tentative until stellar evolution calculations can provide more consistent rotation profiles and estimates of magnetic field strengths to initialize multidimensional simulations without substantial numerical transients. We also stress the need for longer simulations, resolution studies, and an investigation of non-ideal effects.
doi_str_mv 10.1093/mnras/stad3113
format article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stad3113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stad3113</oup_id><sourcerecordid>10.1093/mnras/stad3113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-6d9d2c482d638a1e713bc50a1049362ee9f8e4ef0e01ec8fd604ff66499603263</originalsourceid><addsrcrecordid>eNqFkDFPwzAUhC0EEqGwMntlSPteXurGIypQkCpYYI6M81wFJXZkp5X672kpzEwnne5Op0-IW4QpgqZZ76NJszSahhDpTGRIap4XWqlzkQHQPK8WiJfiKqUvACipUJl4pQeZ2n7bmbENPsngZG82nsdgg9-xPbqy9dLIaIa26fYyhvGQ9RuZtgNHH3ZGDjFs2LdjiNfiwpku8c2vTsTH0-P78jlfv61elvfr3BLSmKtGN4Utq6JRVBnkBdKnnYNBKDWpglm7ikt2wIBsK9coKJ1TqtRaweE3TcT0tGtjSCmyq4fY9ibua4T6SKP-oVH_0TgU7k6FsB3-y34DkKRkkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D simulations of magnetoconvection in a rapidly rotating supernova progenitor</title><source>Oxford Open</source><source>EZB Electronic Journals Library</source><creator>Varma, Vishnu ; Müller, Bernhard</creator><creatorcontrib>Varma, Vishnu ; Müller, Bernhard</creatorcontrib><description>ABSTRACT We present a first 3D magnetohydrodynamic (MHD) simulation of oxygen, neon, and carbon shell burning in a rapidly rotating $16\hbox{-}\mathrm{M}_\odot$ core-collapse supernova progenitor. We also run a purely hydrodynamic simulation for comparison. After $\mathord \approx 180\mathrm{s}$ ($\mathord \approx$ 15 and 7 convective turnovers, respectively), the magnetic fields in the oxygen and neon shells achieve saturation at 1011 and 5 × 1010 G. The strong Maxwell stresses become comparable to the radial Reynolds stresses and eventually suppress convection. The suppression of mixing by convection and shear instabilities results in the depletion of fuel at the base of the burning regions, so that the burning shell eventually move outward to cooler regions, thus reducing the energy generation rate. The strong magnetic fields efficiently transport angular momentum outwards, quickly spinning down the rapidly rotating convective oxygen and neon shells and forcing them into rigid rotation. The hydrodynamic model shows complicated redistribution of angular momentum and develops regions of retrograde rotation at the base of the convective shells. We discuss implications of our results for stellar evolution and for the subsequent core-collapse supernova. The rapid redistribution of angular momentum in the MHD model casts some doubt on the possibility of retaining significant core angular momentum for explosions driven by millisecond magnetars. However, findings from multidimensional models remain tentative until stellar evolution calculations can provide more consistent rotation profiles and estimates of magnetic field strengths to initialize multidimensional simulations without substantial numerical transients. We also stress the need for longer simulations, resolution studies, and an investigation of non-ideal effects.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stad3113</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2023-10, Vol.526 (4), p.5249-5262</ispartof><rights>2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-6d9d2c482d638a1e713bc50a1049362ee9f8e4ef0e01ec8fd604ff66499603263</citedby><cites>FETCH-LOGICAL-c313t-6d9d2c482d638a1e713bc50a1049362ee9f8e4ef0e01ec8fd604ff66499603263</cites><orcidid>0000-0002-1685-2465 ; 0000-0002-4470-1277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids></links><search><creatorcontrib>Varma, Vishnu</creatorcontrib><creatorcontrib>Müller, Bernhard</creatorcontrib><title>3D simulations of magnetoconvection in a rapidly rotating supernova progenitor</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT We present a first 3D magnetohydrodynamic (MHD) simulation of oxygen, neon, and carbon shell burning in a rapidly rotating $16\hbox{-}\mathrm{M}_\odot$ core-collapse supernova progenitor. We also run a purely hydrodynamic simulation for comparison. After $\mathord \approx 180\mathrm{s}$ ($\mathord \approx$ 15 and 7 convective turnovers, respectively), the magnetic fields in the oxygen and neon shells achieve saturation at 1011 and 5 × 1010 G. The strong Maxwell stresses become comparable to the radial Reynolds stresses and eventually suppress convection. The suppression of mixing by convection and shear instabilities results in the depletion of fuel at the base of the burning regions, so that the burning shell eventually move outward to cooler regions, thus reducing the energy generation rate. The strong magnetic fields efficiently transport angular momentum outwards, quickly spinning down the rapidly rotating convective oxygen and neon shells and forcing them into rigid rotation. The hydrodynamic model shows complicated redistribution of angular momentum and develops regions of retrograde rotation at the base of the convective shells. We discuss implications of our results for stellar evolution and for the subsequent core-collapse supernova. The rapid redistribution of angular momentum in the MHD model casts some doubt on the possibility of retaining significant core angular momentum for explosions driven by millisecond magnetars. However, findings from multidimensional models remain tentative until stellar evolution calculations can provide more consistent rotation profiles and estimates of magnetic field strengths to initialize multidimensional simulations without substantial numerical transients. We also stress the need for longer simulations, resolution studies, and an investigation of non-ideal effects.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkDFPwzAUhC0EEqGwMntlSPteXurGIypQkCpYYI6M81wFJXZkp5X672kpzEwnne5Op0-IW4QpgqZZ76NJszSahhDpTGRIap4XWqlzkQHQPK8WiJfiKqUvACipUJl4pQeZ2n7bmbENPsngZG82nsdgg9-xPbqy9dLIaIa26fYyhvGQ9RuZtgNHH3ZGDjFs2LdjiNfiwpku8c2vTsTH0-P78jlfv61elvfr3BLSmKtGN4Utq6JRVBnkBdKnnYNBKDWpglm7ikt2wIBsK9coKJ1TqtRaweE3TcT0tGtjSCmyq4fY9ibua4T6SKP-oVH_0TgU7k6FsB3-y34DkKRkkA</recordid><startdate>20231020</startdate><enddate>20231020</enddate><creator>Varma, Vishnu</creator><creator>Müller, Bernhard</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1685-2465</orcidid><orcidid>https://orcid.org/0000-0002-4470-1277</orcidid></search><sort><creationdate>20231020</creationdate><title>3D simulations of magnetoconvection in a rapidly rotating supernova progenitor</title><author>Varma, Vishnu ; Müller, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-6d9d2c482d638a1e713bc50a1049362ee9f8e4ef0e01ec8fd604ff66499603263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varma, Vishnu</creatorcontrib><creatorcontrib>Müller, Bernhard</creatorcontrib><collection>Oxford Open</collection><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varma, Vishnu</au><au>Müller, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D simulations of magnetoconvection in a rapidly rotating supernova progenitor</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2023-10-20</date><risdate>2023</risdate><volume>526</volume><issue>4</issue><spage>5249</spage><epage>5262</epage><pages>5249-5262</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT We present a first 3D magnetohydrodynamic (MHD) simulation of oxygen, neon, and carbon shell burning in a rapidly rotating $16\hbox{-}\mathrm{M}_\odot$ core-collapse supernova progenitor. We also run a purely hydrodynamic simulation for comparison. After $\mathord \approx 180\mathrm{s}$ ($\mathord \approx$ 15 and 7 convective turnovers, respectively), the magnetic fields in the oxygen and neon shells achieve saturation at 1011 and 5 × 1010 G. The strong Maxwell stresses become comparable to the radial Reynolds stresses and eventually suppress convection. The suppression of mixing by convection and shear instabilities results in the depletion of fuel at the base of the burning regions, so that the burning shell eventually move outward to cooler regions, thus reducing the energy generation rate. The strong magnetic fields efficiently transport angular momentum outwards, quickly spinning down the rapidly rotating convective oxygen and neon shells and forcing them into rigid rotation. The hydrodynamic model shows complicated redistribution of angular momentum and develops regions of retrograde rotation at the base of the convective shells. We discuss implications of our results for stellar evolution and for the subsequent core-collapse supernova. The rapid redistribution of angular momentum in the MHD model casts some doubt on the possibility of retaining significant core angular momentum for explosions driven by millisecond magnetars. However, findings from multidimensional models remain tentative until stellar evolution calculations can provide more consistent rotation profiles and estimates of magnetic field strengths to initialize multidimensional simulations without substantial numerical transients. We also stress the need for longer simulations, resolution studies, and an investigation of non-ideal effects.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stad3113</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1685-2465</orcidid><orcidid>https://orcid.org/0000-0002-4470-1277</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2023-10, Vol.526 (4), p.5249-5262
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stad3113
source Oxford Open; EZB Electronic Journals Library
title 3D simulations of magnetoconvection in a rapidly rotating supernova progenitor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A36%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20simulations%20of%20magnetoconvection%20in%20a%20rapidly%20rotating%20supernova%20progenitor&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Varma,%20Vishnu&rft.date=2023-10-20&rft.volume=526&rft.issue=4&rft.spage=5249&rft.epage=5262&rft.pages=5249-5262&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stad3113&rft_dat=%3Coup_cross%3E10.1093/mnras/stad3113%3C/oup_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-6d9d2c482d638a1e713bc50a1049362ee9f8e4ef0e01ec8fd604ff66499603263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stad3113&rfr_iscdi=true