Loading…
Planet formation via pebble accretion in externally photoevaporating discs
ABSTRACT We demonstrate that planet formation via pebble accretion is sensitive to external photoevaporation of the outer disc. In pebble accretion, planets grow by accreting from a flux of solids (pebbles) that radially drift inwards from the pebble production front. If external photoevaporation tr...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2023-04, Vol.522 (2), p.1939-1950 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
We demonstrate that planet formation via pebble accretion is sensitive to external photoevaporation of the outer disc. In pebble accretion, planets grow by accreting from a flux of solids (pebbles) that radially drift inwards from the pebble production front. If external photoevaporation truncates the outer disc fast enough, it can shorten the time before the pebble production front reaches the disc outer edge, cutting off the supply of pebble flux for accretion, hence limiting the pebble mass reservoir for planet growth. Conversely, cloud shielding can protect the disc from strong external photoevaporation and preserve the pebble reservoir. Because grain growth and drift can occur quickly, shielding even on a short time-scale ( |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stad944 |