Loading…

Planet formation via pebble accretion in externally photoevaporating discs

ABSTRACT We demonstrate that planet formation via pebble accretion is sensitive to external photoevaporation of the outer disc. In pebble accretion, planets grow by accreting from a flux of solids (pebbles) that radially drift inwards from the pebble production front. If external photoevaporation tr...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2023-04, Vol.522 (2), p.1939-1950
Main Authors: Qiao, Lin, Coleman, Gavin A L, Haworth, Thomas J
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT We demonstrate that planet formation via pebble accretion is sensitive to external photoevaporation of the outer disc. In pebble accretion, planets grow by accreting from a flux of solids (pebbles) that radially drift inwards from the pebble production front. If external photoevaporation truncates the outer disc fast enough, it can shorten the time before the pebble production front reaches the disc outer edge, cutting off the supply of pebble flux for accretion, hence limiting the pebble mass reservoir for planet growth. Conversely, cloud shielding can protect the disc from strong external photoevaporation and preserve the pebble reservoir. Because grain growth and drift can occur quickly, shielding even on a short time-scale (
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stad944