Loading…

On the kinematics of a runaway Be star population

Abstract We explore the hypothesis that B-type emission-line stars (Be stars) have their origin in mass-transfer binaries by measuring the fraction of runaway Be stars. We assemble the largest-to-date catalogue of 632 Be stars with 6D kinematics, exploiting the precise astrometry of the Tycho-Gaia A...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2018-07, Vol.477 (4), p.5261-5278
Main Authors: Boubert, D, Evans, N W
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c267t-ab117332eb6edc4799fca8fefaf77e8c1e4895a245ca024efa8ed42341b54d93
cites cdi_FETCH-LOGICAL-c267t-ab117332eb6edc4799fca8fefaf77e8c1e4895a245ca024efa8ed42341b54d93
container_end_page 5278
container_issue 4
container_start_page 5261
container_title Monthly notices of the Royal Astronomical Society
container_volume 477
creator Boubert, D
Evans, N W
description Abstract We explore the hypothesis that B-type emission-line stars (Be stars) have their origin in mass-transfer binaries by measuring the fraction of runaway Be stars. We assemble the largest-to-date catalogue of 632 Be stars with 6D kinematics, exploiting the precise astrometry of the Tycho-Gaia Astrometric Solution from the first Gaia data release. Using binary stellar evolution simulations, we make predictions for the runaway and equatorial rotation velocities of a runaway Be star population. Accounting for observational biases, we calculate that if all classical Be stars originated through mass transfer in binaries, then $17.5\hbox{ per cent}$ of the Be stars in our catalogue should be runaways. The remaining 82.5 per cent should be in binaries with subdwarfs, white dwarfs, or neutron stars, because those systems either remained bound post-supernova or avoided the supernova entirely. Using a Bayesian methodology, we compare the hypothesis that each Be star in our catalogue is a runaway to the null hypothesis that it is a member of the Milky Way disc. We find that $13.1^{+2.6}_{-2.4}\hbox{ per cent}$ of the Be stars in our catalogue are runaways and identify a subset of 40 high-probability runaways. We argue that deficiencies in our understanding of binary stellar evolution, as well as the degeneracy between velocity dispersion and number of runaway stars, can explain the slightly lower runaway fraction. We thus conclude that all Be stars could be explained by an origin in mass-transfer binaries. This conclusion is testable with the second Gaia data release (DR2).
doi_str_mv 10.1093/mnras/sty980
format article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_sty980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/sty980</oup_id><sourcerecordid>10.1093/mnras/sty980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-ab117332eb6edc4799fca8fefaf77e8c1e4895a245ca024efa8ed42341b54d93</originalsourceid><addsrcrecordid>eNp9j81KxDAYRYMoWEd3PkB2bqyTL0nzs9TBUWFgNrMvX9MEq9Mfkhbp2zta164u3Hu4cAi5BfYAzIp120VM6zTO1rAzkoFQRc6tUuckY0wUudEAl-QqpQ_GmBRcZQT2HR3fPf1sOt_i2LhE-0CRxqnDL5zpk6dpxEiHfpiOp73vrslFwGPyN3-5Ioft82Hzmu_2L2-bx13uuNJjjhWAFoL7SvnaSW1tcGiCDxi09saBl8YWyGXhkHF56o2vJRcSqkLWVqzI_XLrYp9S9KEcYtNinEtg5Y9t-WtbLrYn_G7B-2n4n_wGTA5YCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the kinematics of a runaway Be star population</title><source>Oxford Journals Open Access Collection</source><creator>Boubert, D ; Evans, N W</creator><creatorcontrib>Boubert, D ; Evans, N W</creatorcontrib><description>Abstract We explore the hypothesis that B-type emission-line stars (Be stars) have their origin in mass-transfer binaries by measuring the fraction of runaway Be stars. We assemble the largest-to-date catalogue of 632 Be stars with 6D kinematics, exploiting the precise astrometry of the Tycho-Gaia Astrometric Solution from the first Gaia data release. Using binary stellar evolution simulations, we make predictions for the runaway and equatorial rotation velocities of a runaway Be star population. Accounting for observational biases, we calculate that if all classical Be stars originated through mass transfer in binaries, then $17.5\hbox{ per cent}$ of the Be stars in our catalogue should be runaways. The remaining 82.5 per cent should be in binaries with subdwarfs, white dwarfs, or neutron stars, because those systems either remained bound post-supernova or avoided the supernova entirely. Using a Bayesian methodology, we compare the hypothesis that each Be star in our catalogue is a runaway to the null hypothesis that it is a member of the Milky Way disc. We find that $13.1^{+2.6}_{-2.4}\hbox{ per cent}$ of the Be stars in our catalogue are runaways and identify a subset of 40 high-probability runaways. We argue that deficiencies in our understanding of binary stellar evolution, as well as the degeneracy between velocity dispersion and number of runaway stars, can explain the slightly lower runaway fraction. We thus conclude that all Be stars could be explained by an origin in mass-transfer binaries. This conclusion is testable with the second Gaia data release (DR2).</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/sty980</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2018-07, Vol.477 (4), p.5261-5278</ispartof><rights>2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-ab117332eb6edc4799fca8fefaf77e8c1e4895a245ca024efa8ed42341b54d93</citedby><cites>FETCH-LOGICAL-c267t-ab117332eb6edc4799fca8fefaf77e8c1e4895a245ca024efa8ed42341b54d93</cites><orcidid>0000-0002-7521-6231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/sty980$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Boubert, D</creatorcontrib><creatorcontrib>Evans, N W</creatorcontrib><title>On the kinematics of a runaway Be star population</title><title>Monthly notices of the Royal Astronomical Society</title><description>Abstract We explore the hypothesis that B-type emission-line stars (Be stars) have their origin in mass-transfer binaries by measuring the fraction of runaway Be stars. We assemble the largest-to-date catalogue of 632 Be stars with 6D kinematics, exploiting the precise astrometry of the Tycho-Gaia Astrometric Solution from the first Gaia data release. Using binary stellar evolution simulations, we make predictions for the runaway and equatorial rotation velocities of a runaway Be star population. Accounting for observational biases, we calculate that if all classical Be stars originated through mass transfer in binaries, then $17.5\hbox{ per cent}$ of the Be stars in our catalogue should be runaways. The remaining 82.5 per cent should be in binaries with subdwarfs, white dwarfs, or neutron stars, because those systems either remained bound post-supernova or avoided the supernova entirely. Using a Bayesian methodology, we compare the hypothesis that each Be star in our catalogue is a runaway to the null hypothesis that it is a member of the Milky Way disc. We find that $13.1^{+2.6}_{-2.4}\hbox{ per cent}$ of the Be stars in our catalogue are runaways and identify a subset of 40 high-probability runaways. We argue that deficiencies in our understanding of binary stellar evolution, as well as the degeneracy between velocity dispersion and number of runaway stars, can explain the slightly lower runaway fraction. We thus conclude that all Be stars could be explained by an origin in mass-transfer binaries. This conclusion is testable with the second Gaia data release (DR2).</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j81KxDAYRYMoWEd3PkB2bqyTL0nzs9TBUWFgNrMvX9MEq9Mfkhbp2zta164u3Hu4cAi5BfYAzIp120VM6zTO1rAzkoFQRc6tUuckY0wUudEAl-QqpQ_GmBRcZQT2HR3fPf1sOt_i2LhE-0CRxqnDL5zpk6dpxEiHfpiOp73vrslFwGPyN3-5Ioft82Hzmu_2L2-bx13uuNJjjhWAFoL7SvnaSW1tcGiCDxi09saBl8YWyGXhkHF56o2vJRcSqkLWVqzI_XLrYp9S9KEcYtNinEtg5Y9t-WtbLrYn_G7B-2n4n_wGTA5YCg</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Boubert, D</creator><creator>Evans, N W</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7521-6231</orcidid></search><sort><creationdate>20180701</creationdate><title>On the kinematics of a runaway Be star population</title><author>Boubert, D ; Evans, N W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-ab117332eb6edc4799fca8fefaf77e8c1e4895a245ca024efa8ed42341b54d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boubert, D</creatorcontrib><creatorcontrib>Evans, N W</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boubert, D</au><au>Evans, N W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the kinematics of a runaway Be star population</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>477</volume><issue>4</issue><spage>5261</spage><epage>5278</epage><pages>5261-5278</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Abstract We explore the hypothesis that B-type emission-line stars (Be stars) have their origin in mass-transfer binaries by measuring the fraction of runaway Be stars. We assemble the largest-to-date catalogue of 632 Be stars with 6D kinematics, exploiting the precise astrometry of the Tycho-Gaia Astrometric Solution from the first Gaia data release. Using binary stellar evolution simulations, we make predictions for the runaway and equatorial rotation velocities of a runaway Be star population. Accounting for observational biases, we calculate that if all classical Be stars originated through mass transfer in binaries, then $17.5\hbox{ per cent}$ of the Be stars in our catalogue should be runaways. The remaining 82.5 per cent should be in binaries with subdwarfs, white dwarfs, or neutron stars, because those systems either remained bound post-supernova or avoided the supernova entirely. Using a Bayesian methodology, we compare the hypothesis that each Be star in our catalogue is a runaway to the null hypothesis that it is a member of the Milky Way disc. We find that $13.1^{+2.6}_{-2.4}\hbox{ per cent}$ of the Be stars in our catalogue are runaways and identify a subset of 40 high-probability runaways. We argue that deficiencies in our understanding of binary stellar evolution, as well as the degeneracy between velocity dispersion and number of runaway stars, can explain the slightly lower runaway fraction. We thus conclude that all Be stars could be explained by an origin in mass-transfer binaries. This conclusion is testable with the second Gaia data release (DR2).</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/sty980</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7521-6231</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2018-07, Vol.477 (4), p.5261-5278
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_sty980
source Oxford Journals Open Access Collection
title On the kinematics of a runaway Be star population
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20kinematics%20of%20a%20runaway%20Be%20star%20population&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Boubert,%20D&rft.date=2018-07-01&rft.volume=477&rft.issue=4&rft.spage=5261&rft.epage=5278&rft.pages=5261-5278&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/sty980&rft_dat=%3Coup_TOX%3E10.1093/mnras/sty980%3C/oup_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-ab117332eb6edc4799fca8fefaf77e8c1e4895a245ca024efa8ed42341b54d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/sty980&rfr_iscdi=true