Loading…

Flaring radio lanterns along the ridge line: long-term oscillatory motion in the jet of S5 1803+784

ABSTRACT We present a detailed analysis of 30 very long baseline interferometric (VLBI) observations of the BL Lac object S5 1803+784 (z= 0.679), obtained between mean observational time 1994.67 and 2012.91 at observational frequency 15 GHz. The long-term behaviour of the jet ridge line reveals the...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2018-07, Vol.478 (1), p.359-370
Main Authors: Kun, E, Karouzos, M, Gabányi, K É, Britzen, S, Kurtanidze, O M, Gergely, L Á
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT We present a detailed analysis of 30 very long baseline interferometric (VLBI) observations of the BL Lac object S5 1803+784 (z= 0.679), obtained between mean observational time 1994.67 and 2012.91 at observational frequency 15 GHz. The long-term behaviour of the jet ridge line reveals the jet experiences an oscillatory motion superposed on its helical jet kinematics on a time-scale of about 6 yr. The excess variance of the positional variability indicates the jet components being farther from the VLBI core have larger amplitude in their position variations. The fractional variability amplitude shows slight changes in 3 yrbins of the component’s position. The temporal variability in the Doppler boosting of the ridge line results in jet regions behaving as flaring ‘radio lanterns’. We offer a qualitative scenario leading to the oscillation of the jet ridge line that utilizes the orbital motion of the jet emitter black hole due to a binary black hole companion. A correlation analysis implies composite origin of the flux variability of the jet components, emerging due to possibly both the evolving jet structure and its intrinsic variability.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/sty981