Loading…

Classifying the formation processes of S0 galaxies using Convolutional Neural Networks

ABSTRACT Numerous studies have demonstrated the ability of Convolutional Neural Networks (CNNs) to classify large numbers of galaxies in a manner that mimics the expertise of astronomers. Such classifications are not always physically motivated, however, such as categorizing galaxies by their morpho...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2019-07, Vol.486 (4), p.4845-4862
Main Authors: Diaz, J D, Bekki, Kenji, Forbes, Duncan A, Couch, Warrick J, Drinkwater, Michael J, Deeley, Simon
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c270t-d707c8e867167f2df6e9c521f466a7f40a311defbaf66dba6edf10c649d80b4d3
cites cdi_FETCH-LOGICAL-c270t-d707c8e867167f2df6e9c521f466a7f40a311defbaf66dba6edf10c649d80b4d3
container_end_page 4862
container_issue 4
container_start_page 4845
container_title Monthly notices of the Royal Astronomical Society
container_volume 486
creator Diaz, J D
Bekki, Kenji
Forbes, Duncan A
Couch, Warrick J
Drinkwater, Michael J
Deeley, Simon
description ABSTRACT Numerous studies have demonstrated the ability of Convolutional Neural Networks (CNNs) to classify large numbers of galaxies in a manner that mimics the expertise of astronomers. Such classifications are not always physically motivated, however, such as categorizing galaxies by their morphological types. In this work, we consider the use of CNNs to classify simulated S0 galaxies based on fundamental physical properties. In particular, we undertake two investigations: (1) the classification of simulated S0 galaxies into three distinct evolutionary paths (isolated, tidal interaction in a group halo, and spiral–spiral merger) and (2) the prediction of the mass ratio for the S0s formed via mergers. To train the CNNs, we first run several hundred N-body simulations to model the formation of S0s under idealized conditions, and then we build our training data sets by creating images of stellar density and two-dimensional kinematic maps for each simulated S0. Our trained networks have remarkable accuracies exceeding 99 per cent when classifying the S0 formation pathway. For the case of predicting merger mass ratios, the mean predictions are consistent with the true values to within roughly one standard deviation across the full range of our data. Our work demonstrates the potential of CNNs to classify galaxies by the fundamental physical properties that drive their evolution.
doi_str_mv 10.1093/mnras/stz1057
format article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stz1057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stz1057</oup_id><sourcerecordid>10.1093/mnras/stz1057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-d707c8e867167f2df6e9c521f466a7f40a311defbaf66dba6edf10c649d80b4d3</originalsourceid><addsrcrecordid>eNqF0D1PwzAQh3ELgUQojOweWULPeTknI4qAIlUw8LJGTmyXQBJXvgQon56m7c7010k_3fAwdingWkAez7veK5rT8CsglUcsEDGmYZQjHrMAIE7DTApxys6IPgAgiSMM2FvRKqLGbpp-xYd3w63znRoa1_O1d7UhMsSd5c_AV6pVP832HGnCheu_XDtOVLX80Yx-N8O38590zk6saslcHHbGXu9uX4pFuHy6fyhulmEdSRhCLUHWmclQCpQ20hZNXqeRsAmikjYBFQuhja2URdSVQqOtgBqTXGdQJTqesXD_t_aOyBtbrn3TKb8pBZRTlHIXpTxE2fqrvXfj-h_6B0n4Z3s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Classifying the formation processes of S0 galaxies using Convolutional Neural Networks</title><source>Oxford Academic Journals (Open Access)</source><creator>Diaz, J D ; Bekki, Kenji ; Forbes, Duncan A ; Couch, Warrick J ; Drinkwater, Michael J ; Deeley, Simon</creator><creatorcontrib>Diaz, J D ; Bekki, Kenji ; Forbes, Duncan A ; Couch, Warrick J ; Drinkwater, Michael J ; Deeley, Simon</creatorcontrib><description>ABSTRACT Numerous studies have demonstrated the ability of Convolutional Neural Networks (CNNs) to classify large numbers of galaxies in a manner that mimics the expertise of astronomers. Such classifications are not always physically motivated, however, such as categorizing galaxies by their morphological types. In this work, we consider the use of CNNs to classify simulated S0 galaxies based on fundamental physical properties. In particular, we undertake two investigations: (1) the classification of simulated S0 galaxies into three distinct evolutionary paths (isolated, tidal interaction in a group halo, and spiral–spiral merger) and (2) the prediction of the mass ratio for the S0s formed via mergers. To train the CNNs, we first run several hundred N-body simulations to model the formation of S0s under idealized conditions, and then we build our training data sets by creating images of stellar density and two-dimensional kinematic maps for each simulated S0. Our trained networks have remarkable accuracies exceeding 99 per cent when classifying the S0 formation pathway. For the case of predicting merger mass ratios, the mean predictions are consistent with the true values to within roughly one standard deviation across the full range of our data. Our work demonstrates the potential of CNNs to classify galaxies by the fundamental physical properties that drive their evolution.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stz1057</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2019-07, Vol.486 (4), p.4845-4862</ispartof><rights>2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-d707c8e867167f2df6e9c521f466a7f40a311defbaf66dba6edf10c649d80b4d3</citedby><cites>FETCH-LOGICAL-c270t-d707c8e867167f2df6e9c521f466a7f40a311defbaf66dba6edf10c649d80b4d3</cites><orcidid>0000-0003-4867-0022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stz1057$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Diaz, J D</creatorcontrib><creatorcontrib>Bekki, Kenji</creatorcontrib><creatorcontrib>Forbes, Duncan A</creatorcontrib><creatorcontrib>Couch, Warrick J</creatorcontrib><creatorcontrib>Drinkwater, Michael J</creatorcontrib><creatorcontrib>Deeley, Simon</creatorcontrib><title>Classifying the formation processes of S0 galaxies using Convolutional Neural Networks</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT Numerous studies have demonstrated the ability of Convolutional Neural Networks (CNNs) to classify large numbers of galaxies in a manner that mimics the expertise of astronomers. Such classifications are not always physically motivated, however, such as categorizing galaxies by their morphological types. In this work, we consider the use of CNNs to classify simulated S0 galaxies based on fundamental physical properties. In particular, we undertake two investigations: (1) the classification of simulated S0 galaxies into three distinct evolutionary paths (isolated, tidal interaction in a group halo, and spiral–spiral merger) and (2) the prediction of the mass ratio for the S0s formed via mergers. To train the CNNs, we first run several hundred N-body simulations to model the formation of S0s under idealized conditions, and then we build our training data sets by creating images of stellar density and two-dimensional kinematic maps for each simulated S0. Our trained networks have remarkable accuracies exceeding 99 per cent when classifying the S0 formation pathway. For the case of predicting merger mass ratios, the mean predictions are consistent with the true values to within roughly one standard deviation across the full range of our data. Our work demonstrates the potential of CNNs to classify galaxies by the fundamental physical properties that drive their evolution.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqF0D1PwzAQh3ELgUQojOweWULPeTknI4qAIlUw8LJGTmyXQBJXvgQon56m7c7010k_3fAwdingWkAez7veK5rT8CsglUcsEDGmYZQjHrMAIE7DTApxys6IPgAgiSMM2FvRKqLGbpp-xYd3w63znRoa1_O1d7UhMsSd5c_AV6pVP832HGnCheu_XDtOVLX80Yx-N8O38590zk6saslcHHbGXu9uX4pFuHy6fyhulmEdSRhCLUHWmclQCpQ20hZNXqeRsAmikjYBFQuhja2URdSVQqOtgBqTXGdQJTqesXD_t_aOyBtbrn3TKb8pBZRTlHIXpTxE2fqrvXfj-h_6B0n4Z3s</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Diaz, J D</creator><creator>Bekki, Kenji</creator><creator>Forbes, Duncan A</creator><creator>Couch, Warrick J</creator><creator>Drinkwater, Michael J</creator><creator>Deeley, Simon</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4867-0022</orcidid></search><sort><creationdate>20190701</creationdate><title>Classifying the formation processes of S0 galaxies using Convolutional Neural Networks</title><author>Diaz, J D ; Bekki, Kenji ; Forbes, Duncan A ; Couch, Warrick J ; Drinkwater, Michael J ; Deeley, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-d707c8e867167f2df6e9c521f466a7f40a311defbaf66dba6edf10c649d80b4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diaz, J D</creatorcontrib><creatorcontrib>Bekki, Kenji</creatorcontrib><creatorcontrib>Forbes, Duncan A</creatorcontrib><creatorcontrib>Couch, Warrick J</creatorcontrib><creatorcontrib>Drinkwater, Michael J</creatorcontrib><creatorcontrib>Deeley, Simon</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Diaz, J D</au><au>Bekki, Kenji</au><au>Forbes, Duncan A</au><au>Couch, Warrick J</au><au>Drinkwater, Michael J</au><au>Deeley, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classifying the formation processes of S0 galaxies using Convolutional Neural Networks</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>486</volume><issue>4</issue><spage>4845</spage><epage>4862</epage><pages>4845-4862</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT Numerous studies have demonstrated the ability of Convolutional Neural Networks (CNNs) to classify large numbers of galaxies in a manner that mimics the expertise of astronomers. Such classifications are not always physically motivated, however, such as categorizing galaxies by their morphological types. In this work, we consider the use of CNNs to classify simulated S0 galaxies based on fundamental physical properties. In particular, we undertake two investigations: (1) the classification of simulated S0 galaxies into three distinct evolutionary paths (isolated, tidal interaction in a group halo, and spiral–spiral merger) and (2) the prediction of the mass ratio for the S0s formed via mergers. To train the CNNs, we first run several hundred N-body simulations to model the formation of S0s under idealized conditions, and then we build our training data sets by creating images of stellar density and two-dimensional kinematic maps for each simulated S0. Our trained networks have remarkable accuracies exceeding 99 per cent when classifying the S0 formation pathway. For the case of predicting merger mass ratios, the mean predictions are consistent with the true values to within roughly one standard deviation across the full range of our data. Our work demonstrates the potential of CNNs to classify galaxies by the fundamental physical properties that drive their evolution.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stz1057</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4867-0022</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2019-07, Vol.486 (4), p.4845-4862
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stz1057
source Oxford Academic Journals (Open Access)
title Classifying the formation processes of S0 galaxies using Convolutional Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classifying%20the%20formation%20processes%20of%20S0%20galaxies%20using%20Convolutional%20Neural%20Networks&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Diaz,%20J%20D&rft.date=2019-07-01&rft.volume=486&rft.issue=4&rft.spage=4845&rft.epage=4862&rft.pages=4845-4862&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stz1057&rft_dat=%3Coup_TOX%3E10.1093/mnras/stz1057%3C/oup_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-d707c8e867167f2df6e9c521f466a7f40a311defbaf66dba6edf10c649d80b4d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stz1057&rfr_iscdi=true