Loading…

Constraints on the interacting vacuum–geodesic CDM scenario

Abstract We investigate an interacting dark sector scenario in which the vacuum energy is free to interact with cold dark matter (CDM), which itself is assumed to cluster under the sole action of gravity, i.e. it is in freefall (geodesic), as in ΛCDM. The interaction is characterized by a dimensionl...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2019-09, Vol.488 (3), p.3423-3438
Main Authors: Martinelli, Matteo, Hogg, Natalie B, Peirone, Simone, Bruni, Marco, Wands, David
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-65a1148aea021176979f6613f39f3611e508cc9bf82cb679c45b169d756cb0b53
cites cdi_FETCH-LOGICAL-c375t-65a1148aea021176979f6613f39f3611e508cc9bf82cb679c45b169d756cb0b53
container_end_page 3438
container_issue 3
container_start_page 3423
container_title Monthly notices of the Royal Astronomical Society
container_volume 488
creator Martinelli, Matteo
Hogg, Natalie B
Peirone, Simone
Bruni, Marco
Wands, David
description Abstract We investigate an interacting dark sector scenario in which the vacuum energy is free to interact with cold dark matter (CDM), which itself is assumed to cluster under the sole action of gravity, i.e. it is in freefall (geodesic), as in ΛCDM. The interaction is characterized by a dimensionless coupling qV(z), in general a function of redshift. Aiming to reconstruct the evolution of the coupling, we use cosmic microwave background data from Planck 2015, along with baryon acoustic oscillation, redshift space distortion, and Type Ia supernova measurements to constrain various parametrizations of qV(z). We present the full linear perturbation theory of this interacting scenario and use Monte Carlo Markov Chains (MCMC) sampling to study five different cases: two cases in which we have ΛCDM evolution in the distant past, until a set redshift ztrans, below which the interaction switches on and qV is the single-sampled parameter, with ztrans fixed at ztrans = 3000 and 0.9, respectively; a case where we allow this transition redshift to vary along with qV; a case in which the vacuum energy is zero for z > ztrans and then begins to grow once the interaction switches on; and the final case in which we bin qV(z) in four redshift bins to investigate the possibility of a dynamical interaction, reconstructing the redshift evolution of the function using Gaussian processes. We find that, in all cases where the high-redshift evolution is not modified, the results are compatible with a vanishing coupling, thus finding no significant deviation from ΛCDM.
doi_str_mv 10.1093/mnras/stz1915
format article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stz1915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stz1915</oup_id><sourcerecordid>10.1093/mnras/stz1915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-65a1148aea021176979f6613f39f3611e508cc9bf82cb679c45b169d756cb0b53</originalsourceid><addsrcrecordid>eNqFj7FOwzAURS0EEqUwsntkCfWL4-d4YECBAlIRC8yR49oliNiV7SDBxD_wh3wJhXZnunc4OtIh5BTYOTDFZ4OPOs1S_gAFYo9MgKMoSoW4TyaMcVHUEuCQHKX0whireIkTctEEn3LUvc-JBk_zs6Wbb6M2ufcr-qbNOA7fn18rG5Y29YY2V_c0Get17MMxOXD6NdmT3U7J0_z6sbktFg83d83lojBcilyg0ABVra1mJYBEJZVDBO64chwBrGC1MapzdWk6lMpUogNUSynQdKwTfEqKrdfEkFK0rl3HftDxvQXW_ra3f-3trn3Dn235MK7_QX8AC2NdUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Constraints on the interacting vacuum–geodesic CDM scenario</title><source>Oxford University Press Open Access</source><creator>Martinelli, Matteo ; Hogg, Natalie B ; Peirone, Simone ; Bruni, Marco ; Wands, David</creator><creatorcontrib>Martinelli, Matteo ; Hogg, Natalie B ; Peirone, Simone ; Bruni, Marco ; Wands, David</creatorcontrib><description>Abstract We investigate an interacting dark sector scenario in which the vacuum energy is free to interact with cold dark matter (CDM), which itself is assumed to cluster under the sole action of gravity, i.e. it is in freefall (geodesic), as in ΛCDM. The interaction is characterized by a dimensionless coupling qV(z), in general a function of redshift. Aiming to reconstruct the evolution of the coupling, we use cosmic microwave background data from Planck 2015, along with baryon acoustic oscillation, redshift space distortion, and Type Ia supernova measurements to constrain various parametrizations of qV(z). We present the full linear perturbation theory of this interacting scenario and use Monte Carlo Markov Chains (MCMC) sampling to study five different cases: two cases in which we have ΛCDM evolution in the distant past, until a set redshift ztrans, below which the interaction switches on and qV is the single-sampled parameter, with ztrans fixed at ztrans = 3000 and 0.9, respectively; a case where we allow this transition redshift to vary along with qV; a case in which the vacuum energy is zero for z &gt; ztrans and then begins to grow once the interaction switches on; and the final case in which we bin qV(z) in four redshift bins to investigate the possibility of a dynamical interaction, reconstructing the redshift evolution of the function using Gaussian processes. We find that, in all cases where the high-redshift evolution is not modified, the results are compatible with a vanishing coupling, thus finding no significant deviation from ΛCDM.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stz1915</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2019-09, Vol.488 (3), p.3423-3438</ispartof><rights>2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-65a1148aea021176979f6613f39f3611e508cc9bf82cb679c45b169d756cb0b53</citedby><cites>FETCH-LOGICAL-c375t-65a1148aea021176979f6613f39f3611e508cc9bf82cb679c45b169d756cb0b53</cites><orcidid>0000-0001-9346-4477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stz1915$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Martinelli, Matteo</creatorcontrib><creatorcontrib>Hogg, Natalie B</creatorcontrib><creatorcontrib>Peirone, Simone</creatorcontrib><creatorcontrib>Bruni, Marco</creatorcontrib><creatorcontrib>Wands, David</creatorcontrib><title>Constraints on the interacting vacuum–geodesic CDM scenario</title><title>Monthly notices of the Royal Astronomical Society</title><description>Abstract We investigate an interacting dark sector scenario in which the vacuum energy is free to interact with cold dark matter (CDM), which itself is assumed to cluster under the sole action of gravity, i.e. it is in freefall (geodesic), as in ΛCDM. The interaction is characterized by a dimensionless coupling qV(z), in general a function of redshift. Aiming to reconstruct the evolution of the coupling, we use cosmic microwave background data from Planck 2015, along with baryon acoustic oscillation, redshift space distortion, and Type Ia supernova measurements to constrain various parametrizations of qV(z). We present the full linear perturbation theory of this interacting scenario and use Monte Carlo Markov Chains (MCMC) sampling to study five different cases: two cases in which we have ΛCDM evolution in the distant past, until a set redshift ztrans, below which the interaction switches on and qV is the single-sampled parameter, with ztrans fixed at ztrans = 3000 and 0.9, respectively; a case where we allow this transition redshift to vary along with qV; a case in which the vacuum energy is zero for z &gt; ztrans and then begins to grow once the interaction switches on; and the final case in which we bin qV(z) in four redshift bins to investigate the possibility of a dynamical interaction, reconstructing the redshift evolution of the function using Gaussian processes. We find that, in all cases where the high-redshift evolution is not modified, the results are compatible with a vanishing coupling, thus finding no significant deviation from ΛCDM.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFj7FOwzAURS0EEqUwsntkCfWL4-d4YECBAlIRC8yR49oliNiV7SDBxD_wh3wJhXZnunc4OtIh5BTYOTDFZ4OPOs1S_gAFYo9MgKMoSoW4TyaMcVHUEuCQHKX0whireIkTctEEn3LUvc-JBk_zs6Wbb6M2ufcr-qbNOA7fn18rG5Y29YY2V_c0Get17MMxOXD6NdmT3U7J0_z6sbktFg83d83lojBcilyg0ABVra1mJYBEJZVDBO64chwBrGC1MapzdWk6lMpUogNUSynQdKwTfEqKrdfEkFK0rl3HftDxvQXW_ra3f-3trn3Dn235MK7_QX8AC2NdUQ</recordid><startdate>20190921</startdate><enddate>20190921</enddate><creator>Martinelli, Matteo</creator><creator>Hogg, Natalie B</creator><creator>Peirone, Simone</creator><creator>Bruni, Marco</creator><creator>Wands, David</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9346-4477</orcidid></search><sort><creationdate>20190921</creationdate><title>Constraints on the interacting vacuum–geodesic CDM scenario</title><author>Martinelli, Matteo ; Hogg, Natalie B ; Peirone, Simone ; Bruni, Marco ; Wands, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-65a1148aea021176979f6613f39f3611e508cc9bf82cb679c45b169d756cb0b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinelli, Matteo</creatorcontrib><creatorcontrib>Hogg, Natalie B</creatorcontrib><creatorcontrib>Peirone, Simone</creatorcontrib><creatorcontrib>Bruni, Marco</creatorcontrib><creatorcontrib>Wands, David</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Martinelli, Matteo</au><au>Hogg, Natalie B</au><au>Peirone, Simone</au><au>Bruni, Marco</au><au>Wands, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraints on the interacting vacuum–geodesic CDM scenario</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2019-09-21</date><risdate>2019</risdate><volume>488</volume><issue>3</issue><spage>3423</spage><epage>3438</epage><pages>3423-3438</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Abstract We investigate an interacting dark sector scenario in which the vacuum energy is free to interact with cold dark matter (CDM), which itself is assumed to cluster under the sole action of gravity, i.e. it is in freefall (geodesic), as in ΛCDM. The interaction is characterized by a dimensionless coupling qV(z), in general a function of redshift. Aiming to reconstruct the evolution of the coupling, we use cosmic microwave background data from Planck 2015, along with baryon acoustic oscillation, redshift space distortion, and Type Ia supernova measurements to constrain various parametrizations of qV(z). We present the full linear perturbation theory of this interacting scenario and use Monte Carlo Markov Chains (MCMC) sampling to study five different cases: two cases in which we have ΛCDM evolution in the distant past, until a set redshift ztrans, below which the interaction switches on and qV is the single-sampled parameter, with ztrans fixed at ztrans = 3000 and 0.9, respectively; a case where we allow this transition redshift to vary along with qV; a case in which the vacuum energy is zero for z &gt; ztrans and then begins to grow once the interaction switches on; and the final case in which we bin qV(z) in four redshift bins to investigate the possibility of a dynamical interaction, reconstructing the redshift evolution of the function using Gaussian processes. We find that, in all cases where the high-redshift evolution is not modified, the results are compatible with a vanishing coupling, thus finding no significant deviation from ΛCDM.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stz1915</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9346-4477</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2019-09, Vol.488 (3), p.3423-3438
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stz1915
source Oxford University Press Open Access
title Constraints on the interacting vacuum–geodesic CDM scenario
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraints%20on%20the%20interacting%20vacuum%E2%80%93geodesic%20CDM%20scenario&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Martinelli,%20Matteo&rft.date=2019-09-21&rft.volume=488&rft.issue=3&rft.spage=3423&rft.epage=3438&rft.pages=3423-3438&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stz1915&rft_dat=%3Coup_TOX%3E10.1093/mnras/stz1915%3C/oup_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-65a1148aea021176979f6613f39f3611e508cc9bf82cb679c45b169d756cb0b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stz1915&rfr_iscdi=true