Loading…
Can magnetic fields (de)stabilize twin stars?
Abstract Sharp phase transitions allow for the existence of a third family of stable compact stars, twin stars. In this work, we investigate for the first time the role of strong magnetic fields on non-magnetic twin-star sequences and the case in which magnetic fields themselves give rise to a third...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2019-06, Vol.485 (4), p.4873-4877 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Sharp phase transitions allow for the existence of a third family of stable compact stars, twin stars. In this work, we investigate for the first time the role of strong magnetic fields on non-magnetic twin-star sequences and the case in which magnetic fields themselves give rise to a third family of stable stars. We use three sets of equations of state to study such effects from a general point of view. Magnetic field effects are introduced in the structure of stars through the solution of the Einstein-Maxwell equations, assuming a poloidal magnetic field configuration and a metric that allows for the description of deformed stars. We show that strong magnetic fields can destabilize twin-star sequences. On the other hand, magnetic fields can also give rise to twin stars in models that did not predict these sequences. In this sense, magnetic fields can play an important role in the evolution of neutron stars. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stz542 |