Loading…
The molecular gas properties in the gravitationally lensed merger HATLAS J142935.3–002836
Follow-up observations of (sub-)mm-selected gravitationally lensed systems have allowed a more detailed study of the dust-enshrouded phase of star formation up to very early cosmic times. Here, the case of the gravitationally lensed merger in HATLAS J142935.3–002836 (also known as H1429−0028; zlens ...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2019-06, Vol.486 (2), p.2366-2378 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Follow-up observations of (sub-)mm-selected gravitationally lensed systems have allowed a more detailed study of the dust-enshrouded phase of star formation up to very early cosmic times. Here, the case of the gravitationally lensed merger in HATLAS J142935.3–002836 (also known as H1429−0028; zlens = 0.218, zbkg = 1.027) is revisited following recent developments in the literature and new Atacama Pathfinder EXperiment (APEX) observations targeting two carbon monoxide (CO) rotational transitions Jup = 3 and 6. We show that the line profiles comprise three distinct velocity components, where the fainter high velocity one is less magnified and more compact. The modelling of the observed spectral line energy distribution of CO Jup = 2–6 and [C i] 3P1−3P0 assumes a large velocity gradient scenario, where the analysis is based on four statistical approaches. Since the detected gas and dust emission comes exclusively from only one of the two merging components (the one oriented north–south, NS), we are only able to determine upper limits for the companion. The molecular gas in the NS component in H1429−0028 is found to have a temperature of ∼70 K, a volume density of log (n[cm−3]) ∼ 3.7, to be expanding at ∼10 km s−1 pc−1, and amounts to ${M_{\rm H_2} = 4_{-2}^{+3} \times 10^9\,{\rm M}_\odot }$. The CO to H2 conversion factor is estimated to be $\alpha _{\rm CO} = 0.4_{-0.2}^{+0.3}\,$ M⊙/(K km s−1 pc2). The NS galaxy is expected to have a factor of ≳10× more gas than its companion (${M_{\rm H_2}}\lesssim 3\times 10^8$ M⊙). Nevertheless, the total amount of molecular gas in the system comprises only up to 15 per cent (1σ upper limit) of the total (dynamical) mass. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stz945 |