Loading…

Sustaining enhanced condensation on hierarchical mesh-covered surfaces

Controlling the solid–liquid–vapor tri-phase interface is of fundamental importance for a broad range of industrial applications including biomedical engineering, energy production and utilization, environmental control, water production, and thermal management. Although a lot of progress has been m...

Full description

Saved in:
Bibliographic Details
Published in:National science review 2018-11, Vol.5 (6), p.878-887
Main Authors: Wen, Rongfu, Xu, Shanshan, Zhao, Dongliang, Yang, Lixin, Ma, Xuehu, Liu, Wei, Lee, Yung-Cheng, Yang, Ronggui
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c267t-e6b2296464e6ada6d1106422f360c4231b6296829335e01e5da19e4751988fc23
cites cdi_FETCH-LOGICAL-c267t-e6b2296464e6ada6d1106422f360c4231b6296829335e01e5da19e4751988fc23
container_end_page 887
container_issue 6
container_start_page 878
container_title National science review
container_volume 5
creator Wen, Rongfu
Xu, Shanshan
Zhao, Dongliang
Yang, Lixin
Ma, Xuehu
Liu, Wei
Lee, Yung-Cheng
Yang, Ronggui
description Controlling the solid–liquid–vapor tri-phase interface is of fundamental importance for a broad range of industrial applications including biomedical engineering, energy production and utilization, environmental control, water production, and thermal management. Although a lot of progress has been made over the past few decades on surface manipulation for promoting droplet removal, it is challenging to accelerate both droplet growth and surface refreshing for enhancing vapor-to-liquid condensation. Here we present a superhydrophobic hierarchical mesh-covered (hi-mesh) surface to enable continuous sucking flow of liquid condensate, which achieves fourfold-higher droplet growth and 36.8% faster surface refreshing compared to the state-of-the-art dropwise condensation. Unprecedented enhanced condensation heat transfer is observed to be sustained over a wide range of surface subcooling on the hi-mesh surfaces. This demonstration of sustained enhanced condensation enhancement is not only of fundamental scientific importance, but also provides a viable strategy for large-scale deployment of micro/nanostructured surfaces in a diverse range of technologies.
doi_str_mv 10.1093/nsr/nwy098
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_nsr_nwy098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_nsr_nwy098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-e6b2296464e6ada6d1106422f360c4231b6296829335e01e5da19e4751988fc23</originalsourceid><addsrcrecordid>eNotkE9Lw0AUxBdRsLS9-AlyFtbu23_JHqVYFQoerOAtbDYvZqHdyL5U6bc3pcLADMwwhx9jdyAeQDi1SpRX6fckXHXFZlIYxUvQn9fn7Aw3oKpbtiSKjZiyLUsNM7Z5P9LoY4rpq8DU-xSwLcKQWkzkxzikYlIfMfsc-hj8vjgg9TwMP5inJR1z5wPSgt10fk-4_Pc5-9g87dYvfPv2_Lp-3PIgbTlytI2Uzmqr0frW2xZAWC1lp6wIWipo7FRX0illUACa1oNDXRpwVdUFqebs_vIb8kCUsau_czz4fKpB1GcI9QShvkBQf2vNUPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sustaining enhanced condensation on hierarchical mesh-covered surfaces</title><source>Oxford Open</source><creator>Wen, Rongfu ; Xu, Shanshan ; Zhao, Dongliang ; Yang, Lixin ; Ma, Xuehu ; Liu, Wei ; Lee, Yung-Cheng ; Yang, Ronggui</creator><creatorcontrib>Wen, Rongfu ; Xu, Shanshan ; Zhao, Dongliang ; Yang, Lixin ; Ma, Xuehu ; Liu, Wei ; Lee, Yung-Cheng ; Yang, Ronggui</creatorcontrib><description>Controlling the solid–liquid–vapor tri-phase interface is of fundamental importance for a broad range of industrial applications including biomedical engineering, energy production and utilization, environmental control, water production, and thermal management. Although a lot of progress has been made over the past few decades on surface manipulation for promoting droplet removal, it is challenging to accelerate both droplet growth and surface refreshing for enhancing vapor-to-liquid condensation. Here we present a superhydrophobic hierarchical mesh-covered (hi-mesh) surface to enable continuous sucking flow of liquid condensate, which achieves fourfold-higher droplet growth and 36.8% faster surface refreshing compared to the state-of-the-art dropwise condensation. Unprecedented enhanced condensation heat transfer is observed to be sustained over a wide range of surface subcooling on the hi-mesh surfaces. This demonstration of sustained enhanced condensation enhancement is not only of fundamental scientific importance, but also provides a viable strategy for large-scale deployment of micro/nanostructured surfaces in a diverse range of technologies.</description><identifier>ISSN: 2095-5138</identifier><identifier>EISSN: 2053-714X</identifier><identifier>DOI: 10.1093/nsr/nwy098</identifier><language>eng</language><ispartof>National science review, 2018-11, Vol.5 (6), p.878-887</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-e6b2296464e6ada6d1106422f360c4231b6296829335e01e5da19e4751988fc23</citedby><cites>FETCH-LOGICAL-c267t-e6b2296464e6ada6d1106422f360c4231b6296829335e01e5da19e4751988fc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wen, Rongfu</creatorcontrib><creatorcontrib>Xu, Shanshan</creatorcontrib><creatorcontrib>Zhao, Dongliang</creatorcontrib><creatorcontrib>Yang, Lixin</creatorcontrib><creatorcontrib>Ma, Xuehu</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lee, Yung-Cheng</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><title>Sustaining enhanced condensation on hierarchical mesh-covered surfaces</title><title>National science review</title><description>Controlling the solid–liquid–vapor tri-phase interface is of fundamental importance for a broad range of industrial applications including biomedical engineering, energy production and utilization, environmental control, water production, and thermal management. Although a lot of progress has been made over the past few decades on surface manipulation for promoting droplet removal, it is challenging to accelerate both droplet growth and surface refreshing for enhancing vapor-to-liquid condensation. Here we present a superhydrophobic hierarchical mesh-covered (hi-mesh) surface to enable continuous sucking flow of liquid condensate, which achieves fourfold-higher droplet growth and 36.8% faster surface refreshing compared to the state-of-the-art dropwise condensation. Unprecedented enhanced condensation heat transfer is observed to be sustained over a wide range of surface subcooling on the hi-mesh surfaces. This demonstration of sustained enhanced condensation enhancement is not only of fundamental scientific importance, but also provides a viable strategy for large-scale deployment of micro/nanostructured surfaces in a diverse range of technologies.</description><issn>2095-5138</issn><issn>2053-714X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkE9Lw0AUxBdRsLS9-AlyFtbu23_JHqVYFQoerOAtbDYvZqHdyL5U6bc3pcLADMwwhx9jdyAeQDi1SpRX6fckXHXFZlIYxUvQn9fn7Aw3oKpbtiSKjZiyLUsNM7Z5P9LoY4rpq8DU-xSwLcKQWkzkxzikYlIfMfsc-hj8vjgg9TwMP5inJR1z5wPSgt10fk-4_Pc5-9g87dYvfPv2_Lp-3PIgbTlytI2Uzmqr0frW2xZAWC1lp6wIWipo7FRX0illUACa1oNDXRpwVdUFqebs_vIb8kCUsau_czz4fKpB1GcI9QShvkBQf2vNUPk</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Wen, Rongfu</creator><creator>Xu, Shanshan</creator><creator>Zhao, Dongliang</creator><creator>Yang, Lixin</creator><creator>Ma, Xuehu</creator><creator>Liu, Wei</creator><creator>Lee, Yung-Cheng</creator><creator>Yang, Ronggui</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>Sustaining enhanced condensation on hierarchical mesh-covered surfaces</title><author>Wen, Rongfu ; Xu, Shanshan ; Zhao, Dongliang ; Yang, Lixin ; Ma, Xuehu ; Liu, Wei ; Lee, Yung-Cheng ; Yang, Ronggui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-e6b2296464e6ada6d1106422f360c4231b6296829335e01e5da19e4751988fc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Rongfu</creatorcontrib><creatorcontrib>Xu, Shanshan</creatorcontrib><creatorcontrib>Zhao, Dongliang</creatorcontrib><creatorcontrib>Yang, Lixin</creatorcontrib><creatorcontrib>Ma, Xuehu</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lee, Yung-Cheng</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><collection>CrossRef</collection><jtitle>National science review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Rongfu</au><au>Xu, Shanshan</au><au>Zhao, Dongliang</au><au>Yang, Lixin</au><au>Ma, Xuehu</au><au>Liu, Wei</au><au>Lee, Yung-Cheng</au><au>Yang, Ronggui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sustaining enhanced condensation on hierarchical mesh-covered surfaces</atitle><jtitle>National science review</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>5</volume><issue>6</issue><spage>878</spage><epage>887</epage><pages>878-887</pages><issn>2095-5138</issn><eissn>2053-714X</eissn><abstract>Controlling the solid–liquid–vapor tri-phase interface is of fundamental importance for a broad range of industrial applications including biomedical engineering, energy production and utilization, environmental control, water production, and thermal management. Although a lot of progress has been made over the past few decades on surface manipulation for promoting droplet removal, it is challenging to accelerate both droplet growth and surface refreshing for enhancing vapor-to-liquid condensation. Here we present a superhydrophobic hierarchical mesh-covered (hi-mesh) surface to enable continuous sucking flow of liquid condensate, which achieves fourfold-higher droplet growth and 36.8% faster surface refreshing compared to the state-of-the-art dropwise condensation. Unprecedented enhanced condensation heat transfer is observed to be sustained over a wide range of surface subcooling on the hi-mesh surfaces. This demonstration of sustained enhanced condensation enhancement is not only of fundamental scientific importance, but also provides a viable strategy for large-scale deployment of micro/nanostructured surfaces in a diverse range of technologies.</abstract><doi>10.1093/nsr/nwy098</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-5138
ispartof National science review, 2018-11, Vol.5 (6), p.878-887
issn 2095-5138
2053-714X
language eng
recordid cdi_crossref_primary_10_1093_nsr_nwy098
source Oxford Open
title Sustaining enhanced condensation on hierarchical mesh-covered surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A40%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sustaining%20enhanced%20condensation%20on%20hierarchical%20mesh-covered%20surfaces&rft.jtitle=National%20science%20review&rft.au=Wen,%20Rongfu&rft.date=2018-11-01&rft.volume=5&rft.issue=6&rft.spage=878&rft.epage=887&rft.pages=878-887&rft.issn=2095-5138&rft.eissn=2053-714X&rft_id=info:doi/10.1093/nsr/nwy098&rft_dat=%3Ccrossref%3E10_1093_nsr_nwy098%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-e6b2296464e6ada6d1106422f360c4231b6296829335e01e5da19e4751988fc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true