Loading…
Sustaining enhanced condensation on hierarchical mesh-covered surfaces
Controlling the solid–liquid–vapor tri-phase interface is of fundamental importance for a broad range of industrial applications including biomedical engineering, energy production and utilization, environmental control, water production, and thermal management. Although a lot of progress has been m...
Saved in:
Published in: | National science review 2018-11, Vol.5 (6), p.878-887 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c267t-e6b2296464e6ada6d1106422f360c4231b6296829335e01e5da19e4751988fc23 |
---|---|
cites | cdi_FETCH-LOGICAL-c267t-e6b2296464e6ada6d1106422f360c4231b6296829335e01e5da19e4751988fc23 |
container_end_page | 887 |
container_issue | 6 |
container_start_page | 878 |
container_title | National science review |
container_volume | 5 |
creator | Wen, Rongfu Xu, Shanshan Zhao, Dongliang Yang, Lixin Ma, Xuehu Liu, Wei Lee, Yung-Cheng Yang, Ronggui |
description | Controlling the solid–liquid–vapor tri-phase interface is of fundamental importance for a broad range of industrial applications including biomedical engineering, energy production and utilization, environmental control, water production, and thermal management. Although a lot of progress has been made over the past few decades on surface manipulation for promoting droplet removal, it is challenging to accelerate both droplet growth and surface refreshing for enhancing vapor-to-liquid condensation. Here we present a superhydrophobic hierarchical mesh-covered (hi-mesh) surface to enable continuous sucking flow of liquid condensate, which achieves fourfold-higher droplet growth and 36.8% faster surface refreshing compared to the state-of-the-art dropwise condensation. Unprecedented enhanced condensation heat transfer is observed to be sustained over a wide range of surface subcooling on the hi-mesh surfaces. This demonstration of sustained enhanced condensation enhancement is not only of fundamental scientific importance, but also provides a viable strategy for large-scale deployment of micro/nanostructured surfaces in a diverse range of technologies. |
doi_str_mv | 10.1093/nsr/nwy098 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_nsr_nwy098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_nsr_nwy098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-e6b2296464e6ada6d1106422f360c4231b6296829335e01e5da19e4751988fc23</originalsourceid><addsrcrecordid>eNotkE9Lw0AUxBdRsLS9-AlyFtbu23_JHqVYFQoerOAtbDYvZqHdyL5U6bc3pcLADMwwhx9jdyAeQDi1SpRX6fckXHXFZlIYxUvQn9fn7Aw3oKpbtiSKjZiyLUsNM7Z5P9LoY4rpq8DU-xSwLcKQWkzkxzikYlIfMfsc-hj8vjgg9TwMP5inJR1z5wPSgt10fk-4_Pc5-9g87dYvfPv2_Lp-3PIgbTlytI2Uzmqr0frW2xZAWC1lp6wIWipo7FRX0illUACa1oNDXRpwVdUFqebs_vIb8kCUsau_czz4fKpB1GcI9QShvkBQf2vNUPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sustaining enhanced condensation on hierarchical mesh-covered surfaces</title><source>Oxford Open</source><creator>Wen, Rongfu ; Xu, Shanshan ; Zhao, Dongliang ; Yang, Lixin ; Ma, Xuehu ; Liu, Wei ; Lee, Yung-Cheng ; Yang, Ronggui</creator><creatorcontrib>Wen, Rongfu ; Xu, Shanshan ; Zhao, Dongliang ; Yang, Lixin ; Ma, Xuehu ; Liu, Wei ; Lee, Yung-Cheng ; Yang, Ronggui</creatorcontrib><description>Controlling the solid–liquid–vapor tri-phase interface is of fundamental importance for a broad range of industrial applications including biomedical engineering, energy production and utilization, environmental control, water production, and thermal management. Although a lot of progress has been made over the past few decades on surface manipulation for promoting droplet removal, it is challenging to accelerate both droplet growth and surface refreshing for enhancing vapor-to-liquid condensation. Here we present a superhydrophobic hierarchical mesh-covered (hi-mesh) surface to enable continuous sucking flow of liquid condensate, which achieves fourfold-higher droplet growth and 36.8% faster surface refreshing compared to the state-of-the-art dropwise condensation. Unprecedented enhanced condensation heat transfer is observed to be sustained over a wide range of surface subcooling on the hi-mesh surfaces. This demonstration of sustained enhanced condensation enhancement is not only of fundamental scientific importance, but also provides a viable strategy for large-scale deployment of micro/nanostructured surfaces in a diverse range of technologies.</description><identifier>ISSN: 2095-5138</identifier><identifier>EISSN: 2053-714X</identifier><identifier>DOI: 10.1093/nsr/nwy098</identifier><language>eng</language><ispartof>National science review, 2018-11, Vol.5 (6), p.878-887</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-e6b2296464e6ada6d1106422f360c4231b6296829335e01e5da19e4751988fc23</citedby><cites>FETCH-LOGICAL-c267t-e6b2296464e6ada6d1106422f360c4231b6296829335e01e5da19e4751988fc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wen, Rongfu</creatorcontrib><creatorcontrib>Xu, Shanshan</creatorcontrib><creatorcontrib>Zhao, Dongliang</creatorcontrib><creatorcontrib>Yang, Lixin</creatorcontrib><creatorcontrib>Ma, Xuehu</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lee, Yung-Cheng</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><title>Sustaining enhanced condensation on hierarchical mesh-covered surfaces</title><title>National science review</title><description>Controlling the solid–liquid–vapor tri-phase interface is of fundamental importance for a broad range of industrial applications including biomedical engineering, energy production and utilization, environmental control, water production, and thermal management. Although a lot of progress has been made over the past few decades on surface manipulation for promoting droplet removal, it is challenging to accelerate both droplet growth and surface refreshing for enhancing vapor-to-liquid condensation. Here we present a superhydrophobic hierarchical mesh-covered (hi-mesh) surface to enable continuous sucking flow of liquid condensate, which achieves fourfold-higher droplet growth and 36.8% faster surface refreshing compared to the state-of-the-art dropwise condensation. Unprecedented enhanced condensation heat transfer is observed to be sustained over a wide range of surface subcooling on the hi-mesh surfaces. This demonstration of sustained enhanced condensation enhancement is not only of fundamental scientific importance, but also provides a viable strategy for large-scale deployment of micro/nanostructured surfaces in a diverse range of technologies.</description><issn>2095-5138</issn><issn>2053-714X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkE9Lw0AUxBdRsLS9-AlyFtbu23_JHqVYFQoerOAtbDYvZqHdyL5U6bc3pcLADMwwhx9jdyAeQDi1SpRX6fckXHXFZlIYxUvQn9fn7Aw3oKpbtiSKjZiyLUsNM7Z5P9LoY4rpq8DU-xSwLcKQWkzkxzikYlIfMfsc-hj8vjgg9TwMP5inJR1z5wPSgt10fk-4_Pc5-9g87dYvfPv2_Lp-3PIgbTlytI2Uzmqr0frW2xZAWC1lp6wIWipo7FRX0illUACa1oNDXRpwVdUFqebs_vIb8kCUsau_czz4fKpB1GcI9QShvkBQf2vNUPk</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Wen, Rongfu</creator><creator>Xu, Shanshan</creator><creator>Zhao, Dongliang</creator><creator>Yang, Lixin</creator><creator>Ma, Xuehu</creator><creator>Liu, Wei</creator><creator>Lee, Yung-Cheng</creator><creator>Yang, Ronggui</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>Sustaining enhanced condensation on hierarchical mesh-covered surfaces</title><author>Wen, Rongfu ; Xu, Shanshan ; Zhao, Dongliang ; Yang, Lixin ; Ma, Xuehu ; Liu, Wei ; Lee, Yung-Cheng ; Yang, Ronggui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-e6b2296464e6ada6d1106422f360c4231b6296829335e01e5da19e4751988fc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Rongfu</creatorcontrib><creatorcontrib>Xu, Shanshan</creatorcontrib><creatorcontrib>Zhao, Dongliang</creatorcontrib><creatorcontrib>Yang, Lixin</creatorcontrib><creatorcontrib>Ma, Xuehu</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lee, Yung-Cheng</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><collection>CrossRef</collection><jtitle>National science review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Rongfu</au><au>Xu, Shanshan</au><au>Zhao, Dongliang</au><au>Yang, Lixin</au><au>Ma, Xuehu</au><au>Liu, Wei</au><au>Lee, Yung-Cheng</au><au>Yang, Ronggui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sustaining enhanced condensation on hierarchical mesh-covered surfaces</atitle><jtitle>National science review</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>5</volume><issue>6</issue><spage>878</spage><epage>887</epage><pages>878-887</pages><issn>2095-5138</issn><eissn>2053-714X</eissn><abstract>Controlling the solid–liquid–vapor tri-phase interface is of fundamental importance for a broad range of industrial applications including biomedical engineering, energy production and utilization, environmental control, water production, and thermal management. Although a lot of progress has been made over the past few decades on surface manipulation for promoting droplet removal, it is challenging to accelerate both droplet growth and surface refreshing for enhancing vapor-to-liquid condensation. Here we present a superhydrophobic hierarchical mesh-covered (hi-mesh) surface to enable continuous sucking flow of liquid condensate, which achieves fourfold-higher droplet growth and 36.8% faster surface refreshing compared to the state-of-the-art dropwise condensation. Unprecedented enhanced condensation heat transfer is observed to be sustained over a wide range of surface subcooling on the hi-mesh surfaces. This demonstration of sustained enhanced condensation enhancement is not only of fundamental scientific importance, but also provides a viable strategy for large-scale deployment of micro/nanostructured surfaces in a diverse range of technologies.</abstract><doi>10.1093/nsr/nwy098</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-5138 |
ispartof | National science review, 2018-11, Vol.5 (6), p.878-887 |
issn | 2095-5138 2053-714X |
language | eng |
recordid | cdi_crossref_primary_10_1093_nsr_nwy098 |
source | Oxford Open |
title | Sustaining enhanced condensation on hierarchical mesh-covered surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A40%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sustaining%20enhanced%20condensation%20on%20hierarchical%20mesh-covered%20surfaces&rft.jtitle=National%20science%20review&rft.au=Wen,%20Rongfu&rft.date=2018-11-01&rft.volume=5&rft.issue=6&rft.spage=878&rft.epage=887&rft.pages=878-887&rft.issn=2095-5138&rft.eissn=2053-714X&rft_id=info:doi/10.1093/nsr/nwy098&rft_dat=%3Ccrossref%3E10_1093_nsr_nwy098%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-e6b2296464e6ada6d1106422f360c4231b6296829335e01e5da19e4751988fc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |