Loading…
A GPU-accelerated image reduction pipeline
We developed a high-speed image reduction pipeline using Graphics Processing Units (GPUs) as hardware accelerators. Astronomers desire to detect the emission measure counterpart of gravitational-wave sources as soon as possible and to share in the systematic follow-up observation. Therefore, high-sp...
Saved in:
Published in: | Publications of the Astronomical Society of Japan 2021-02, Vol.73 (1), p.14-24 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-c9d406db9a94d8656def2792c032192b543b1aa83b1713f1d5e2a4a3e632e2f13 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-c9d406db9a94d8656def2792c032192b543b1aa83b1713f1d5e2a4a3e632e2f13 |
container_end_page | 24 |
container_issue | 1 |
container_start_page | 14 |
container_title | Publications of the Astronomical Society of Japan |
container_volume | 73 |
creator | Niwano, Masafumi Murata, Katsuhiro L Adachi, Ryo Wang, Sili Tachibana, Yutaro Yatsu, Yoichi Kawai, Nobuyuki Shimokawabe, Takashi Itoh, Ryosuke |
description | We developed a high-speed image reduction pipeline using Graphics Processing Units (GPUs) as hardware accelerators. Astronomers desire to detect the emission measure counterpart of gravitational-wave sources as soon as possible and to share in the systematic follow-up observation. Therefore, high-speed image processing is important. We developed a new image-reduction pipeline for our robotic telescope system, which uses a GPU via the Python package CuPy for high-speed image processing. As a result, the new pipeline has increased in processing speed by more than 40 times compared with the current one, while maintaining the same functions. |
doi_str_mv | 10.1093/pasj/psaa091 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_pasj_psaa091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_pasj_psaa091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-c9d406db9a94d8656def2792c032192b543b1aa83b1713f1d5e2a4a3e632e2f13</originalsourceid><addsrcrecordid>eNotz0FLw0AQBeBFFAy1N39AzuLamZ3NJnssRatQ0IMFb2GyO5FIbcNuPPjvbbGX926P9yl1i_CA4Gkxcv5ajJkZPF6owkBFGir8uFQFAFjtjLPXap7z0IFxvkZXU6HuluX6bas5BNlJ4kliOXzzp5RJ4k-YhsO-HIdRdsNebtRVz7ss83PP1Pbp8X31rDev65fVcqMDNTTp4KMFFzvP3sbGVS5Kb2pvApBBb7rKUofMzTFrpB5jJYYtkzgyYnqkmbr_3w3pkHOSvh3T8VP6bRHaE7U9Udszlf4AJpVHjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A GPU-accelerated image reduction pipeline</title><source>Oxford Journals Online</source><creator>Niwano, Masafumi ; Murata, Katsuhiro L ; Adachi, Ryo ; Wang, Sili ; Tachibana, Yutaro ; Yatsu, Yoichi ; Kawai, Nobuyuki ; Shimokawabe, Takashi ; Itoh, Ryosuke</creator><creatorcontrib>Niwano, Masafumi ; Murata, Katsuhiro L ; Adachi, Ryo ; Wang, Sili ; Tachibana, Yutaro ; Yatsu, Yoichi ; Kawai, Nobuyuki ; Shimokawabe, Takashi ; Itoh, Ryosuke</creatorcontrib><description>We developed a high-speed image reduction pipeline using Graphics Processing Units (GPUs) as hardware accelerators. Astronomers desire to detect the emission measure counterpart of gravitational-wave sources as soon as possible and to share in the systematic follow-up observation. Therefore, high-speed image processing is important. We developed a new image-reduction pipeline for our robotic telescope system, which uses a GPU via the Python package CuPy for high-speed image processing. As a result, the new pipeline has increased in processing speed by more than 40 times compared with the current one, while maintaining the same functions.</description><identifier>ISSN: 0004-6264</identifier><identifier>EISSN: 2053-051X</identifier><identifier>DOI: 10.1093/pasj/psaa091</identifier><language>eng</language><ispartof>Publications of the Astronomical Society of Japan, 2021-02, Vol.73 (1), p.14-24</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-c9d406db9a94d8656def2792c032192b543b1aa83b1713f1d5e2a4a3e632e2f13</citedby><cites>FETCH-LOGICAL-c383t-c9d406db9a94d8656def2792c032192b543b1aa83b1713f1d5e2a4a3e632e2f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Niwano, Masafumi</creatorcontrib><creatorcontrib>Murata, Katsuhiro L</creatorcontrib><creatorcontrib>Adachi, Ryo</creatorcontrib><creatorcontrib>Wang, Sili</creatorcontrib><creatorcontrib>Tachibana, Yutaro</creatorcontrib><creatorcontrib>Yatsu, Yoichi</creatorcontrib><creatorcontrib>Kawai, Nobuyuki</creatorcontrib><creatorcontrib>Shimokawabe, Takashi</creatorcontrib><creatorcontrib>Itoh, Ryosuke</creatorcontrib><title>A GPU-accelerated image reduction pipeline</title><title>Publications of the Astronomical Society of Japan</title><description>We developed a high-speed image reduction pipeline using Graphics Processing Units (GPUs) as hardware accelerators. Astronomers desire to detect the emission measure counterpart of gravitational-wave sources as soon as possible and to share in the systematic follow-up observation. Therefore, high-speed image processing is important. We developed a new image-reduction pipeline for our robotic telescope system, which uses a GPU via the Python package CuPy for high-speed image processing. As a result, the new pipeline has increased in processing speed by more than 40 times compared with the current one, while maintaining the same functions.</description><issn>0004-6264</issn><issn>2053-051X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotz0FLw0AQBeBFFAy1N39AzuLamZ3NJnssRatQ0IMFb2GyO5FIbcNuPPjvbbGX926P9yl1i_CA4Gkxcv5ajJkZPF6owkBFGir8uFQFAFjtjLPXap7z0IFxvkZXU6HuluX6bas5BNlJ4kliOXzzp5RJ4k-YhsO-HIdRdsNebtRVz7ss83PP1Pbp8X31rDev65fVcqMDNTTp4KMFFzvP3sbGVS5Kb2pvApBBb7rKUofMzTFrpB5jJYYtkzgyYnqkmbr_3w3pkHOSvh3T8VP6bRHaE7U9Udszlf4AJpVHjw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Niwano, Masafumi</creator><creator>Murata, Katsuhiro L</creator><creator>Adachi, Ryo</creator><creator>Wang, Sili</creator><creator>Tachibana, Yutaro</creator><creator>Yatsu, Yoichi</creator><creator>Kawai, Nobuyuki</creator><creator>Shimokawabe, Takashi</creator><creator>Itoh, Ryosuke</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>A GPU-accelerated image reduction pipeline</title><author>Niwano, Masafumi ; Murata, Katsuhiro L ; Adachi, Ryo ; Wang, Sili ; Tachibana, Yutaro ; Yatsu, Yoichi ; Kawai, Nobuyuki ; Shimokawabe, Takashi ; Itoh, Ryosuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-c9d406db9a94d8656def2792c032192b543b1aa83b1713f1d5e2a4a3e632e2f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niwano, Masafumi</creatorcontrib><creatorcontrib>Murata, Katsuhiro L</creatorcontrib><creatorcontrib>Adachi, Ryo</creatorcontrib><creatorcontrib>Wang, Sili</creatorcontrib><creatorcontrib>Tachibana, Yutaro</creatorcontrib><creatorcontrib>Yatsu, Yoichi</creatorcontrib><creatorcontrib>Kawai, Nobuyuki</creatorcontrib><creatorcontrib>Shimokawabe, Takashi</creatorcontrib><creatorcontrib>Itoh, Ryosuke</creatorcontrib><collection>CrossRef</collection><jtitle>Publications of the Astronomical Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niwano, Masafumi</au><au>Murata, Katsuhiro L</au><au>Adachi, Ryo</au><au>Wang, Sili</au><au>Tachibana, Yutaro</au><au>Yatsu, Yoichi</au><au>Kawai, Nobuyuki</au><au>Shimokawabe, Takashi</au><au>Itoh, Ryosuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A GPU-accelerated image reduction pipeline</atitle><jtitle>Publications of the Astronomical Society of Japan</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>73</volume><issue>1</issue><spage>14</spage><epage>24</epage><pages>14-24</pages><issn>0004-6264</issn><eissn>2053-051X</eissn><abstract>We developed a high-speed image reduction pipeline using Graphics Processing Units (GPUs) as hardware accelerators. Astronomers desire to detect the emission measure counterpart of gravitational-wave sources as soon as possible and to share in the systematic follow-up observation. Therefore, high-speed image processing is important. We developed a new image-reduction pipeline for our robotic telescope system, which uses a GPU via the Python package CuPy for high-speed image processing. As a result, the new pipeline has increased in processing speed by more than 40 times compared with the current one, while maintaining the same functions.</abstract><doi>10.1093/pasj/psaa091</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6264 |
ispartof | Publications of the Astronomical Society of Japan, 2021-02, Vol.73 (1), p.14-24 |
issn | 0004-6264 2053-051X |
language | eng |
recordid | cdi_crossref_primary_10_1093_pasj_psaa091 |
source | Oxford Journals Online |
title | A GPU-accelerated image reduction pipeline |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A29%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20GPU-accelerated%20image%20reduction%20pipeline&rft.jtitle=Publications%20of%20the%20Astronomical%20Society%20of%20Japan&rft.au=Niwano,%20Masafumi&rft.date=2021-02-01&rft.volume=73&rft.issue=1&rft.spage=14&rft.epage=24&rft.pages=14-24&rft.issn=0004-6264&rft.eissn=2053-051X&rft_id=info:doi/10.1093/pasj/psaa091&rft_dat=%3Ccrossref%3E10_1093_pasj_psaa091%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-c9d406db9a94d8656def2792c032192b543b1aa83b1713f1d5e2a4a3e632e2f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |