Loading…

Partial Crystallization of Mid-Ocean Ridge Basalts in the Crust and Mantle

Pressures at which partial crystallization occurs for mid-ocean ridge basalts (MORB) have been examined by a new petrological method that is based on a parameterization of experimental data in the form of projections. Application to a global MORB glass database shows that partial crystallization of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of petrology 2004-12, Vol.45 (12), p.2389-2405
Main Author: HERZBERG, C.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-23b7ea0c635ddebec79839e04fd889c7ae6b383f386a4b9cc8528284de025993
cites
container_end_page 2405
container_issue 12
container_start_page 2389
container_title Journal of petrology
container_volume 45
creator HERZBERG, C.
description Pressures at which partial crystallization occurs for mid-ocean ridge basalts (MORB) have been examined by a new petrological method that is based on a parameterization of experimental data in the form of projections. Application to a global MORB glass database shows that partial crystallization of olivine + plagioclase + augite ranges from 1 atm to 1·0 GPa, in good agreement with previous determinations, and that there are regional variations that generally correlate with spreading rate. MORB from fast-spreading centers display partial crystallization in the crust at ridge segment centers and in both mantle and crust at ridge terminations. Fracture zones are likely to be regions where magma chambers are absent and where there is enhanced conductive cooling of the lithosphere at depth. MORB from slow-spreading centers display prominent partial crystallization in the mantle, consistent with models of enhanced conductive cooling of the lithosphere and the greater abundance of fracture zones through which they pass. In general, magmas that move through cold mantle experience some partial crystallization, whereas magmas that pass through hot mantle may be comparatively unaffected. Estimated pressures of partial crystallization indicate that the top of the partial melting region is deeper than about 20–35 km below slow-spreading centers and some ridge segment terminations at fast-spreading centers.
doi_str_mv 10.1093/petrology/egh040
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_petrology_egh040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_HXZ_NM9VD16M_T</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-23b7ea0c635ddebec79839e04fd889c7ae6b383f386a4b9cc8528284de025993</originalsourceid><addsrcrecordid>eNo9kMtOwzAURC0EEqWwZ-kfCL2J87CXEB4FNRShCiE21o1z0xpCUtlGonw9RUVdjTSaM4vD2HkMFzEoMVlTcEM3LDcTWq4ghQM2itMcoiSNs0M2AkiSSGQCjtmJ9-8A8baHEXt4Qhcsdrx0Gx-w6-wPBjv0fGh5ZZtobgh7_mybJfEr9NgFz23Pw4q2xJcPHPuGV9iHjk7ZUYudp7P_HLPF7c2inEaz-d19eTmLjMggRImoC0IwuciahmoyhZJCEaRtI6UyBVJeCylaIXNMa2WMzBKZyLQhSDKlxJjB7ta4wXtHrV47-4luo2PQfyr0XoXeqdgi0Q6xPtD3fo_uQ-eFKDI9fX3Tj5V6uY7zSi_ELwDzZN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Partial Crystallization of Mid-Ocean Ridge Basalts in the Crust and Mantle</title><source>Oxford Journals Online</source><creator>HERZBERG, C.</creator><creatorcontrib>HERZBERG, C.</creatorcontrib><description>Pressures at which partial crystallization occurs for mid-ocean ridge basalts (MORB) have been examined by a new petrological method that is based on a parameterization of experimental data in the form of projections. Application to a global MORB glass database shows that partial crystallization of olivine + plagioclase + augite ranges from 1 atm to 1·0 GPa, in good agreement with previous determinations, and that there are regional variations that generally correlate with spreading rate. MORB from fast-spreading centers display partial crystallization in the crust at ridge segment centers and in both mantle and crust at ridge terminations. Fracture zones are likely to be regions where magma chambers are absent and where there is enhanced conductive cooling of the lithosphere at depth. MORB from slow-spreading centers display prominent partial crystallization in the mantle, consistent with models of enhanced conductive cooling of the lithosphere and the greater abundance of fracture zones through which they pass. In general, magmas that move through cold mantle experience some partial crystallization, whereas magmas that pass through hot mantle may be comparatively unaffected. Estimated pressures of partial crystallization indicate that the top of the partial melting region is deeper than about 20–35 km below slow-spreading centers and some ridge segment terminations at fast-spreading centers.</description><identifier>ISSN: 0022-3530</identifier><identifier>ISSN: 1460-2415</identifier><identifier>EISSN: 1460-2415</identifier><identifier>DOI: 10.1093/petrology/egh040</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>crust ; fracture zones ; lithosphere ; mantle ; MORB ; olivine gabbro ; partial crystallization ; partial melting ; ridge segmentation</subject><ispartof>Journal of petrology, 2004-12, Vol.45 (12), p.2389-2405</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-23b7ea0c635ddebec79839e04fd889c7ae6b383f386a4b9cc8528284de025993</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>HERZBERG, C.</creatorcontrib><title>Partial Crystallization of Mid-Ocean Ridge Basalts in the Crust and Mantle</title><title>Journal of petrology</title><addtitle>J. Petrology</addtitle><description>Pressures at which partial crystallization occurs for mid-ocean ridge basalts (MORB) have been examined by a new petrological method that is based on a parameterization of experimental data in the form of projections. Application to a global MORB glass database shows that partial crystallization of olivine + plagioclase + augite ranges from 1 atm to 1·0 GPa, in good agreement with previous determinations, and that there are regional variations that generally correlate with spreading rate. MORB from fast-spreading centers display partial crystallization in the crust at ridge segment centers and in both mantle and crust at ridge terminations. Fracture zones are likely to be regions where magma chambers are absent and where there is enhanced conductive cooling of the lithosphere at depth. MORB from slow-spreading centers display prominent partial crystallization in the mantle, consistent with models of enhanced conductive cooling of the lithosphere and the greater abundance of fracture zones through which they pass. In general, magmas that move through cold mantle experience some partial crystallization, whereas magmas that pass through hot mantle may be comparatively unaffected. Estimated pressures of partial crystallization indicate that the top of the partial melting region is deeper than about 20–35 km below slow-spreading centers and some ridge segment terminations at fast-spreading centers.</description><subject>crust</subject><subject>fracture zones</subject><subject>lithosphere</subject><subject>mantle</subject><subject>MORB</subject><subject>olivine gabbro</subject><subject>partial crystallization</subject><subject>partial melting</subject><subject>ridge segmentation</subject><issn>0022-3530</issn><issn>1460-2415</issn><issn>1460-2415</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAURC0EEqWwZ-kfCL2J87CXEB4FNRShCiE21o1z0xpCUtlGonw9RUVdjTSaM4vD2HkMFzEoMVlTcEM3LDcTWq4ghQM2itMcoiSNs0M2AkiSSGQCjtmJ9-8A8baHEXt4Qhcsdrx0Gx-w6-wPBjv0fGh5ZZtobgh7_mybJfEr9NgFz23Pw4q2xJcPHPuGV9iHjk7ZUYudp7P_HLPF7c2inEaz-d19eTmLjMggRImoC0IwuciahmoyhZJCEaRtI6UyBVJeCylaIXNMa2WMzBKZyLQhSDKlxJjB7ta4wXtHrV47-4luo2PQfyr0XoXeqdgi0Q6xPtD3fo_uQ-eFKDI9fX3Tj5V6uY7zSi_ELwDzZN4</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>HERZBERG, C.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20041201</creationdate><title>Partial Crystallization of Mid-Ocean Ridge Basalts in the Crust and Mantle</title><author>HERZBERG, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-23b7ea0c635ddebec79839e04fd889c7ae6b383f386a4b9cc8528284de025993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>crust</topic><topic>fracture zones</topic><topic>lithosphere</topic><topic>mantle</topic><topic>MORB</topic><topic>olivine gabbro</topic><topic>partial crystallization</topic><topic>partial melting</topic><topic>ridge segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HERZBERG, C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HERZBERG, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial Crystallization of Mid-Ocean Ridge Basalts in the Crust and Mantle</atitle><jtitle>Journal of petrology</jtitle><addtitle>J. Petrology</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>45</volume><issue>12</issue><spage>2389</spage><epage>2405</epage><pages>2389-2405</pages><issn>0022-3530</issn><issn>1460-2415</issn><eissn>1460-2415</eissn><abstract>Pressures at which partial crystallization occurs for mid-ocean ridge basalts (MORB) have been examined by a new petrological method that is based on a parameterization of experimental data in the form of projections. Application to a global MORB glass database shows that partial crystallization of olivine + plagioclase + augite ranges from 1 atm to 1·0 GPa, in good agreement with previous determinations, and that there are regional variations that generally correlate with spreading rate. MORB from fast-spreading centers display partial crystallization in the crust at ridge segment centers and in both mantle and crust at ridge terminations. Fracture zones are likely to be regions where magma chambers are absent and where there is enhanced conductive cooling of the lithosphere at depth. MORB from slow-spreading centers display prominent partial crystallization in the mantle, consistent with models of enhanced conductive cooling of the lithosphere and the greater abundance of fracture zones through which they pass. In general, magmas that move through cold mantle experience some partial crystallization, whereas magmas that pass through hot mantle may be comparatively unaffected. Estimated pressures of partial crystallization indicate that the top of the partial melting region is deeper than about 20–35 km below slow-spreading centers and some ridge segment terminations at fast-spreading centers.</abstract><pub>Oxford University Press</pub><doi>10.1093/petrology/egh040</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3530
ispartof Journal of petrology, 2004-12, Vol.45 (12), p.2389-2405
issn 0022-3530
1460-2415
1460-2415
language eng
recordid cdi_crossref_primary_10_1093_petrology_egh040
source Oxford Journals Online
subjects crust
fracture zones
lithosphere
mantle
MORB
olivine gabbro
partial crystallization
partial melting
ridge segmentation
title Partial Crystallization of Mid-Ocean Ridge Basalts in the Crust and Mantle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20Crystallization%20of%20Mid-Ocean%20Ridge%20Basalts%20in%20the%20Crust%20and%20Mantle&rft.jtitle=Journal%20of%20petrology&rft.au=HERZBERG,%20C.&rft.date=2004-12-01&rft.volume=45&rft.issue=12&rft.spage=2389&rft.epage=2405&rft.pages=2389-2405&rft.issn=0022-3530&rft.eissn=1460-2415&rft_id=info:doi/10.1093/petrology/egh040&rft_dat=%3Cistex_cross%3Eark_67375_HXZ_NM9VD16M_T%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-23b7ea0c635ddebec79839e04fd889c7ae6b383f386a4b9cc8528284de025993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true